

Programming
Concepts:
Containers

Paulo Penteado

http://www.ppenteado.net/pc/

(http://xkcd.com/163)

http://www.ppenteado.net/pc/
http://xkcd.com/163

Containers

A single value in a variable is not enough.

Containers – variables that hold several values (the elements)

There are many ways to organize the elements: arrays are just one of them
● Each way is implementing some data structure*.

There is no “best container”:

● Each is best suited to different problems

The 3 main properties of containers:

● Homogeneous X heterogeneous: whether all elements are the same type.

● Static X dynamic: whether the number of elements is fixed.

● Sequentiality:
➔ Sequential containers: elements stored by order, and are accessed by indices.
➔ Non-sequential containers: elements stored by name or through relationships.

*A data structure is a way of organizing data; a structure is just one of them.

The most common types (names vary among languages; some have several implementations
for the same type)*:

● Array / vector / matrix (1D or MD): C, C++, Fortran, IDL, Java, Python+Numpy, R

● List: C++, Python, IDL (≥8), Java, R, Perl**

● Map / hash / hashtable / associative array / dictionary: C++, Python, IDL (≥8), Java,
R***, Perl

● Set: C++, Python, Java, R

● Tree / heap: C++, Python, Java

● Stack: C++, Python, Java

● Queue: C++, Python, Java

*Listed only when the structure is part of a language's standard library.

**A Perl array is more like a list than an array.

***Which in R are also called named lists.

Containers

Arrays - definition

The simplest container.

A sequential set o elements, organized regularly, in 1D or more (MD).

Not natively present in some recent languages (Perl, Python without Numpy).

Sometimes called array only when more than 1D, being called vector in the 1D case.

2D sometimes called tables or matrices

● In some languages (ex: R, Python+Numpy), matrix is different from a generic array.

Arrays - characteristics

Homogeneous (all elements must be the same type)

Static (cannot change the number of elements)
● “Dynamic arrays” are actually creating new arrays, and throwing away the old ones on

resize (which is inefficient).

Sequential (elements stored by an order)

Organized in 1D or more (MD).

Element access through their indices (sequential integer numbers).

Usually, the most efficient container for random and sequential access.

Provide the means to do vectorization (do operations on the whole array, or parts of
the array, with a single statement).

● 1D arrays are common.
● MD arrays are often awkward (2D may not be so bad): IDL and Python+Numpy have

high level MD operations.

Internally all elements are stored as a 1D array, even when there are more dimensions
(memory and files are 1D).

● When over 1D, they are always regular (each dimension has a constant number of
elements).

In [5]: import numpy as np

In [6]: a=np.arange(6)+1

In [7]: a
Out[7]: array([1, 2, 3, 4, 5, 6])

In [10]: a.size
Out[10]: 6

In [11]: a.shape
Out[11]: (6,)

Arrays

1D

 a[0] a[1] a[2] a[3] a[4] a[5]

Ex. (Python):

Most often, indexes start at 0. In some languages, the start index can be chosen.

1 2 3 4 5 6

Generates an array of integers with 6
elements, valued 1 to 6.

In [38]: import numpy as np

In [39]: a=(np.arange(6)+1).reshape((2,3))

In [40]: a.size
Out[40]: 6

In [41]: a.shape
Out[41]: (2, 3)

In [42]: a
Out[42]:
array([[1, 2, 3],
 [4, 5, 6]])

Arrays

2D

a[0,0] a[0,1] a[0,2]

a[1,0] a[1,1] a[1,2]

Ex. (Python):

1 2 3

4 5 6

11 12 13 14 15 16 17 18 19

7 8 9 10

1 2 3 4 5 6

Generates an array with 6 elements, in 3
columns by 2 rows, valued 1 to 6.

Must be regular: cannot be like

In [67]: import numpy as np

In [68]: a=np.arange(36).reshape((3,3,4))

In [69]: a.size
Out[69]: 36

In [71]: a.shape
Out[71]: (3, 3, 4)

In [72]: a
Out[72]:
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]],

 [[24, 25, 26, 27],
 [28, 29, 30, 31],
 [32, 33, 34, 35]]])

Arrays

3D is usually thought, graphically, as pile of “pages”, each page being a 2D table. Or as a
brick. Ex. (Python):

Beyond 3D, graphical representations get awkward (sets of 3D arrays for 4D, sets of 4D for
5D, etc.)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

Generates an array of integers, with 36
elements, over 4 columns, 3 rows, 3 “pages”,
valued 0 to 35.

Arrays – MD storage
Internally, they are always 1D

The dimensions are scanned sequentially. Ex (2D): a - 6 elements, 2 columns, 3 rows:

1)
a[0,0] a[1,0] a[2,0] a[0,1] a[1,1] a[2,1]

Memory position:
0 1 2 3 4 5

or

2)
a[0,0] a[0,1] a[1,0] a[1,1] a[2,0] a[2,1]

Memory position:
0 1 2 3 4 5

Each language has its choice of dimension order:

Column major – first dimension is contiguous (1 above): IDL, Fortran, R, Python+Numpy
Row major – last dimension is contiguous (2 above): C, C++, Java, Python+Numpy

Note that languages / people may differ in the use of the terms row and column.

Graphically, usually the “horizontal” dimension (shown over a line) can be either the first of the
last. Usually the horizontal dimension is the contiguous.

1 2

3 4

5 6

1 2

3 4

5 6

In [73]: import numpy as np

In [74]: a=np.arange(4)
In [75]: b=np.arange(6).reshape((3,2))

In [76]: a
Out[76]: array([0, 1, 2, 3])

In [77]: b
Out[77]:
array([[0, 1],
 [2, 3],
 [4, 5]])
In [78]: a[2],a[-1],a[-2]
Out[78]: (2, 3, 2)

In [81]: a[a.size-2]
Out[81]: 2

In [82]: b[2,1]
Out[82]: 5

In [83]: b[2]
Out[83]: array([4, 5])

In [86]: np.where(a > 1)
Out[86]: (array([2, 3]),)

Arrays – basic usage

Access to individual elements, through the M indices (MD), or single index (MD or 1D). Ex.
(Python):

Negative indices are counted from the end
(Python+Numpy, R, IDL≥8): -1 is the last element, -2 the
one before the last, etc.

Return arrays of integers where each element has
the value of its index.

In [113]: import numpy as np
In [114]: b=np.arange(20).reshape((5,4))
In [115]: b
Out[115]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19]])

In [116]: c=b[2:5,1:3]
In [117]: c
Out[117]:
array([[9, 10],
 [13, 14],
 [17, 18]])

In [118]: b[0:3,:]
Out[118]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

In [122]: b[0::2,1:3]
Out[122]:
array([[1, 2],
 [9, 10],
 [17, 18]])

Accessing slices: subsets, 1D or MD, contiguous or not. Ex. (Python):

Elements from columns 1 to 2, from rows
2 to 4

All columns, rows 0 to 2

Columns 1 to 2, rows 0 to last, every
second row (stride 2)

Arrays – basic usage

Arrays – should I care whether they are row/column major?

For most light, simple use, it does not matter.

When does it matter?

1) Vector operations: to select contiguous elements, to use single index for MD arrays.

2) Mixed language / data sources:

● When calling a function from another language, accessing files / network connections
between different languages.

3) Efficiency:

If an array has to be scanned, it is more efficient (specially in disk) to do it in the same order
used internally.
Ex: to run through all the elements of this column major array:

In the same order used internally:

for j=0,2 do begin
 for i=0,1 do begin
 k=i+j*2
 print,i,j,k,a[i,j]
 do_some_stuff,a[i,j]
 endfor
endfor

No going back and forth (shown by variable k).

a[0,0] (a[0]) : 1 a[1,0] (a[1]) : 2

a[0,1] (a[2]) : 3 a[1,1] (a[3]) : 4

a[0,2] (a[4]) : 5 a[1,2] (a[5]) : 6

i j k a[i,j]
 0 0 0 1
 1 0 1 2
 0 1 2 3
 1 1 3 4
 0 2 4 5
 1 2 5 6

Arrays – should I care whether they are row/column major?

Reading out of order:

for i=0,1 do begin
 for j=0,2 do begin
 k=i+j*2
 print,i,j,k,a[i,j]
 do_some_stuff,a[i,j]
 endfor
endfor

Lots of going back and forth:

i j k a[i,j]
 0 0 0 1
 0 1 2 3
 0 2 4 5
 1 0 1 2
 1 1 3 4
 1 2 5 6

Arrays – should I care whether they are row/column major?

The original code read through
disk out of order, taking ~1h to
run (black line).

When reading in order (red line),
the code ran in ~3 min.

One real life example

Arrays – should I care whether they are row/column major?

In [148]: l=[]
In [149]: l.append(2)
In [150]: l.append([5.9,7.0,12.0])
In [151]: l.append(['one','two'])
In [152]: type(l),len(l)
Out[152]: (list, 3)

In [154]: l
Out[154]: [2, [5.9, 7.0, 12.0], ['one', 'two']]

In [155]: l[1]
Out[155]: [5.9, 7.0, 12.0]

In [156]: l.pop(1)
Out[156]: [5.9, 7.0, 12.0]

In [157]: l
Out[157]: [2, ['one', 'two']]

In [158]: l.insert(1,[0,1,2])

In [159]: l
Out[159]: [2, [0, 1, 2], ['one', 'two']]

Lists - definition
Elements stored sequentially, accessed by their indices

● Similar to 1D arrays.

Unlike arrays, lists are dynamic, and, in some languages, heterogeneous (IDL, Python,
R, Perl)*. Ex. (Python):

Creates an empty list

Elements added to the list

Removes element from position 1.
If position unspecified, the last
element is removed.

Add element to position 1.

Lists - characteristics

Efficient to add / remove elements, from any place in the list.

● Usually elements are added / removed to the end by default.

Most appropriate when

● The number of elements to be stored is not known in advance.

● The types / dimensions of the elements are not known in advance.

● When there will be many adds / removals of elements.

Easy storage of “non-regular” arrays.

Applications where each element in the list contains a different number of elements:

● Elements of
➔ Asteroid families
➔ Star / galaxy clusters
➔ Planetary / stellar systems

● Neighbors of objects (from clustering / classification algorithms)
➔ Observations / model results
➔ Different number of observations for each object
➔ Different number of sources found on each observation
➔ Different number of objects used in each model

● Non regular grids
➔ Model parameters (models are calculated for different values of each parameter)
➔ Grids with non-regular spacing
➔ Models with different numbers of objects / species

Lists – application examples

Easy storage of “non-regular” arrays. Exs. (IDL):

IDL> l=list()
IDL> l.add,[1.0d0,9.1d0,-5.2d0]
IDL> l.add,[2.5d0]
IDL> l.add,[-9.8d0,3d2,54d1,7.8d-3]
IDL> print,l
 1.0000000 9.1000000 -5.2000000
 2.5000000
 -9.8000000 300.00000 540.00000 0.0078000000
IDL> a=l[2]
IDL> print,a
 -9.8000000 300.00000 540.00000 0.0078000000

Lists – application examples

Dictionaries - characteristics
Similar to structures: store values by names (keys).

Unlike structures, keys can be any data type (most often used: strings, integers, reals).

Unlike indices (arrays and lists), keys are not sequential.

Unlike structures, dictionaries are dynamic: elements can be freely and efficiently added /
removed.

● Dictionaries are to structures as lists are to 1D arrays.

May be heterogeneous – both keys and values can have different types / dimensions.

Elements may not be stored in order:
● The order the keys are listed may not be the same order in which they were put into the

dictionary.

Find out whether a key is present, and retrieve the value from a key are operations that take
constant time: It does not matter (usually) whether the dictionary has 10 or 1 million elements.

Dictionaries - characteristics
Similar to structures: store values by names (keys).

Unlike structures, keys can be any data type (most often used: strings, integers, reals).

Unlike indices (arrays and lists), keys are not sequential.

Unlike structures, dictionaries are dynamic: elements can be freely and efficiently added /
removed.

● Dictionaries are to structures as lists are to 1D arrays.

May be heterogeneous – both keys and values can have different types / dimensions.

Elements may not be stored in order:
● The order the keys are listed may not be the same order in which they were put into the

dictionary.

Find out whether a key is present, and retrieve the value from a key are operations that take
constant time: It does not matter (usually) whether the dictionary has 10 or 1 million elements.

● Key/value lookup does not involve searches.
● Like a paper dictionary, a paper phone book, or the index in a paper book.

In [185]: d={}
In [186]: d['one']=[9.0,5.8]
In [187]: d[18.7]=-45
In [188]: import numpy as np;d[10]=np.zeros((2,3))
In [191]: type(d),len(d)
Out[191]: (dict, 3)

In [192]: d
Out[192]:
{10: array([[0., 0., 0.],
 [0., 0., 0.]]),
 18.7: -45,
 'one': [9.0, 5.8]}

In [193]: d[10]
Out[193]:
array([[0., 0., 0.],
 [0., 0., 0.]])

In [194]: d.keys()
Out[194]: [10, 18.7, 'one']
In [195]: d.values()
Out[195]:
[array([[0., 0., 0.],
 [0., 0., 0.]]), -45, [9.0, 5.8]]
In [197]: del d['one']

In [198]: d.has_key('one')
Out[198]: False

Dictionaries – basic use (ex. Python): Create an empty
dictionary

Add values to it

Not the same
order they were
put in d!

Storing elements by a useful name, to avoid keep searching for the element of interest. Ex.
(IDL): Storing several spectra, by the target name:

spectra=hash()
foreach el, files do begin
 read_spectrum,el,spectrum_data
 spectra[spectrum_data.target]=spectrum_data
endforeach

Which would be convenient to use:

IDL> help,h
H HASH <ID=1 NELEMENTS=3>

IDL> print,h
HR21948: { HR21948 5428.1000 5428.1390 5428.1780 5428.2170 ...
HR5438: { HR5438 5428.0000 5428.0390 5428.0780 5428.1170 ...
HD205937: { HD205937 5428.1000 5428.1390 5428.1780 5428.2170 ...

IDL> help,h['HR5438']
** Structure <90013e58>, 7 tags, length=4213008, data length=4213008, refs=6:
 TARGET STRING 'HR5438'
 WAVELENGTH DOUBLE Array[1024]
 FLUX DOUBLE Array[1024]
 DATE STRING '20100324'
 FILE STRING 'spm_0049.fits'
 DATA DOUBLE Array[512, 1024]
 HEADER STRING Array[142]

Dictionaries - examples

A lot of freedom in key choice:

● Strings are arbitrary, without the character limitations in structure fields (which cannot
have whitespace or special symbols): -+*/\()[]{} ,”'.

● Special characters commonly appear in useful keys:
➔ File names (some-file.fits)
➔ Object names (alpha centauri, 433 Eros, 2011 MD)
➔ Catalog identifier (PNG 004.9+04.9)
➔ Object classification ([WC6],R*), etc.

● Non-strings are often useful:
➔ Doubles – Julian date, wavelength, coordinates, etc.
➔ Non consecutive integers, not starting at 0: Julian day, catalog number, index

number, etc.

Dictionaries - examples

Other containers

Structures are usually implemented as types, but are also containers – heterogeneous,
static and non sequential:

** Structure <9019c628>, 6 tags, length=64, data length=58, refs=2:
 ELEMENT STRING 'argon'
 INTENSITY DOUBLE 98.735900
 WIDTH DOUBLE 0.0087539000
 ENERGY DOUBLE 12.983800
 IONIZATION INT 3
 DATABASE STRING 'NIST Catalog 12C'
 WAVELENGTH DOUBLE 6398.9548

Dictionaries are to structures (both non sequential) as lists are to arrays (both sequential): the
former is the dynamic version of the latter.

Arrays, lists, structures and dictionaries are the 4 basic containers.
● Most others are specializations of these 4.

Container choice – lists x arrays

Lists and arrays store elements ordered by index. They share many uses.

Differences:

● Lists are dynamic, 1D and may be heterogeneous.

● Arrays are static, homogeneous, and may be more than 1D.

Usually,

● Lists are chosen when one needs:
➔ “non regular arrays”
➔ add/remove elements (particulalry when the number of elements to store is not known in

advance).
➔ elements that are not scalar, or not of the same type.

● Arrays are more convenient when one needs:
➔ More than 1D
➔ vector operations
➔ make sure that elements are scalar and of the same type

Structures and dictionaries store elements by name. They share many uses.

Main difference:

● Dictionaries are dynamic

● Structures are static

Usually,

● Dictionaries are more convenient when:
➔ The keys / types are not known in advance
➔ The values may have to change type / dimensions
➔ Adding removing fields will be necessary
➔ Keys are not just simple strings

● Structures are more convenient:
➔ To put them into arrays, to do vector operations
➔ To enforce constant type / dimensions of values

Container choice – structures x dictionaries

Sets – similar to dictionaries, but only store keys, without values. Like sets in mathematics.

● Common uses: sets of elements with no repetition: one can just add elements to the set,
without having to check if already present.
➔ Exs: Sets of: observed objects, files used, observation dates, etc.

● Important for usefulness of set operations: union, intersection, difference.

● Dictionaries may be used as sets, ignoring the values

Dictionary: Keys HD28598 HD32765 HR592881 HR305710

Values sl_00198.fits sl_00235.fits sl_00316.fits sl_00592.fits

Set: Keys HD28598 HD32765 HR592881 HR305710

Other containers

Stacks – Lists where elements are only added / removed from the end.

● Like a physical stack: one cannot remove or add a book to the bottom or middle of a stack;
only to the top.

● LIFO – Last In, First Out.

Other containers

Queues – FIFO (First In, First Out) lists: elements are only added to the end, and only
removed from the beginning.

● Like a queue of people waiting to enter some place.

Other containers

Trees / heaps – non sequential containers where access is not by order, nor by name. A
hierarchical structures is used:

Other containers

Exs:

● Directory tree in a disk.

● Hierarchical classifications

Other containers - trees

Exs:

● Directory tree in a disk.

● Hierarchical classifications

 (http://www.xkcd.org/835)

Other containers - trees

http://www.xkcd.org/835

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

