Programming Concepts: IDEs, Debug

Paulo Penteado

PROGRAMMING FOR NON-PROGRAMMERS

JORGE CHAM @ 2014

WWW. PHDCOMICS. COM

(http://phdcomics.com/comics/archive.php?comicid=1690)

IDEs

Interactive Development Environments

Exist for every language (even stuff like LaTeX, HTML, CSS).

Provide a single environment for

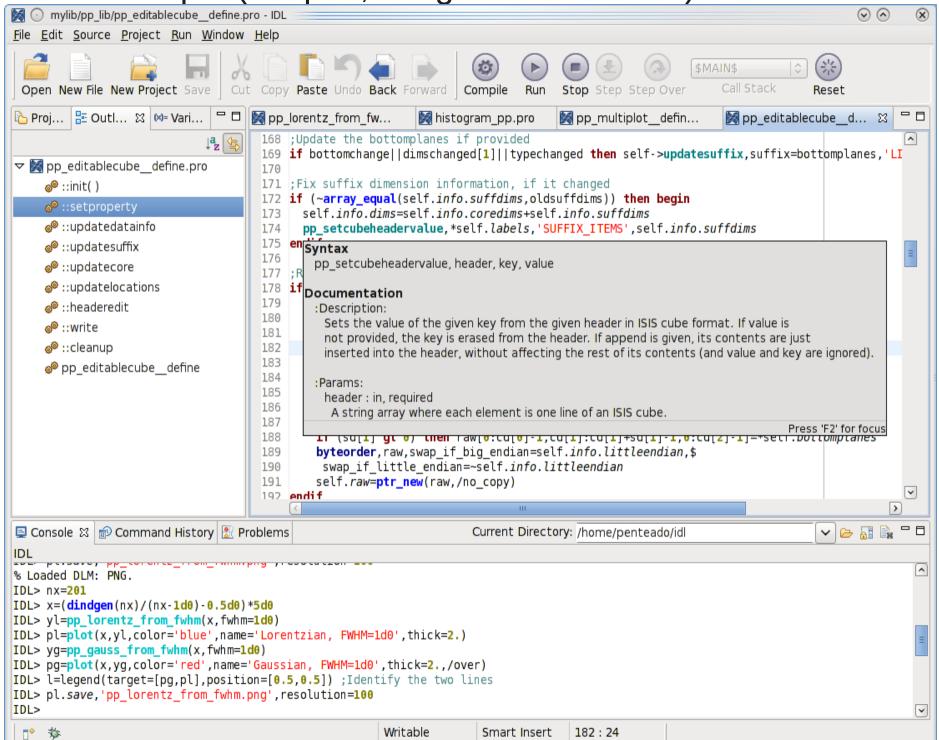
- editing
- compiling / packing
- running
- debugging
- file inspection (any file, not only source files)
- documentation access
- profiling (performance measurement)
- interactive use
- GUI (graphical interface) building

The IDE knows the language being use.

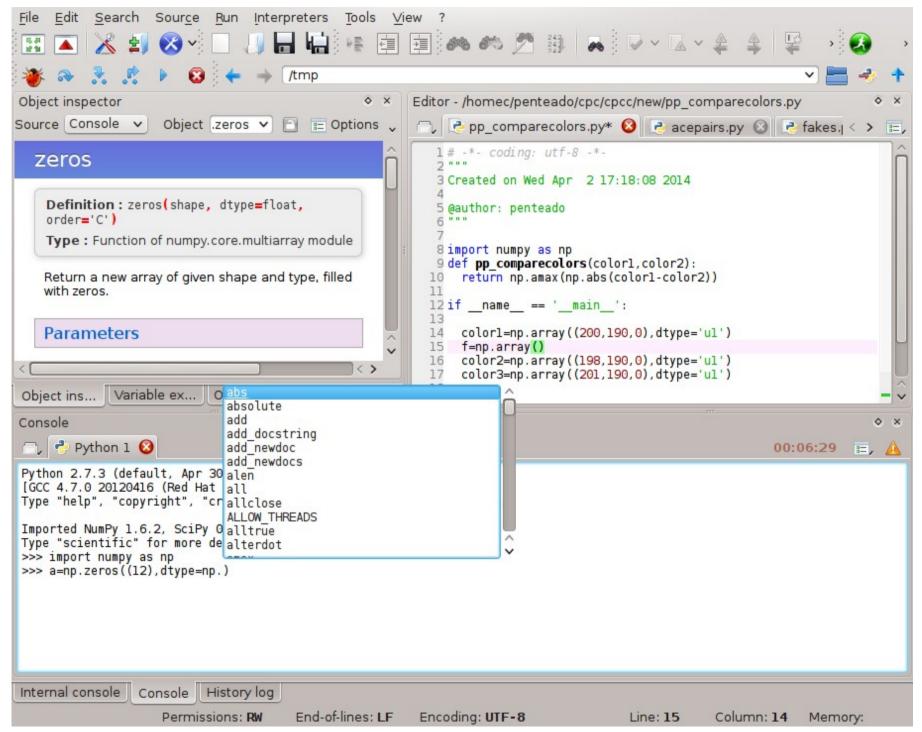
Very useful, often ignored tool (when one uses, instead, text editor + command line).

Some IDEs are multilanguage and multiplatform.

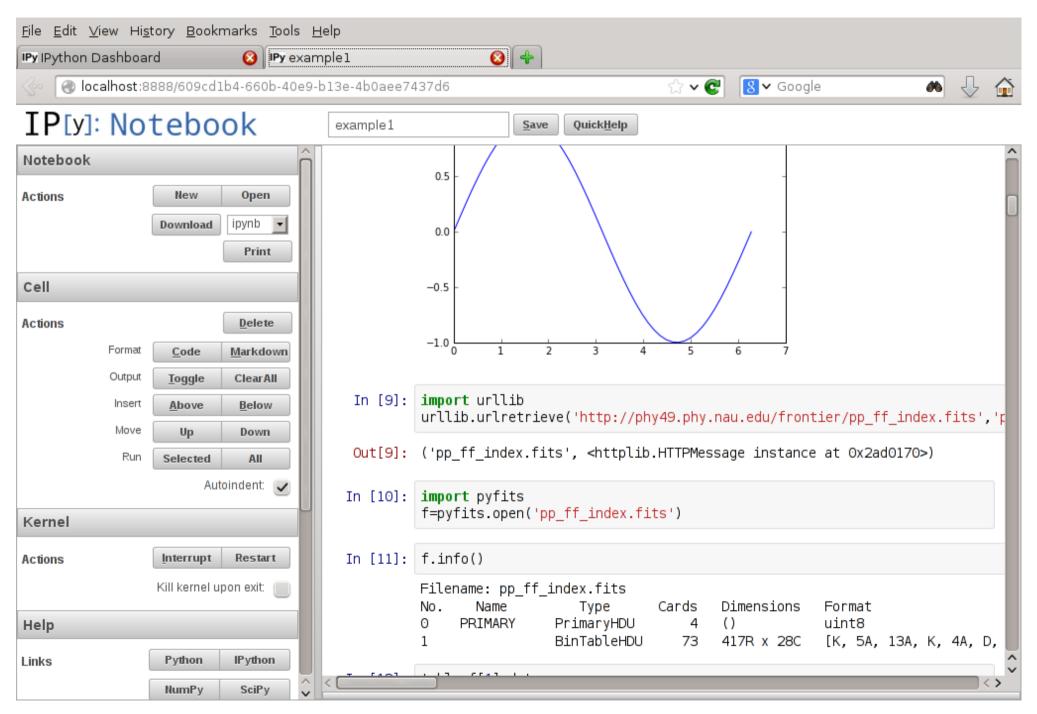
IDEs


Main examples:

- Eclipse nearly any platform and language (even obscure ones like IDL, R)
- Spyder multiplatform, Python only
- Enthought Canopy multiplatform, Python only
- MS Visual Studio Windows, C, C++, VB, C#, and several others (only the Express version, more limited, is free)
- NetBeans any platform, Java, C, C++, e several others
- Xcode Mac, C, C++, Objective C, Java, and several others
- Solaris Studio (old Sun Studio) Linux, Unix, C, C++, Fortran
- C++ Builder (old Borland C++) Windows, C, C++ (commercial)


The editors in the IDEs are the most capable, because they know the languages:

- Syntax highlighting.
- Context help.
- Integrated debugger setting and using breakpoints, looking up variable values.
- In some languages, show error codes live errors, similarly to spellcheckers (not only syntax errors: might show errors in function arguments).


IDEs – example (Eclipse, integrated to IDL \geq 7)

IDEs – example (Spyder)

Not quite an IDE – IPython notebook

Debug – what is a debugger?

The most helpful tool to diagnose and fix bugs. (specially if used in an IDE).

Provides a "live" and interactive analysis of the program execution.

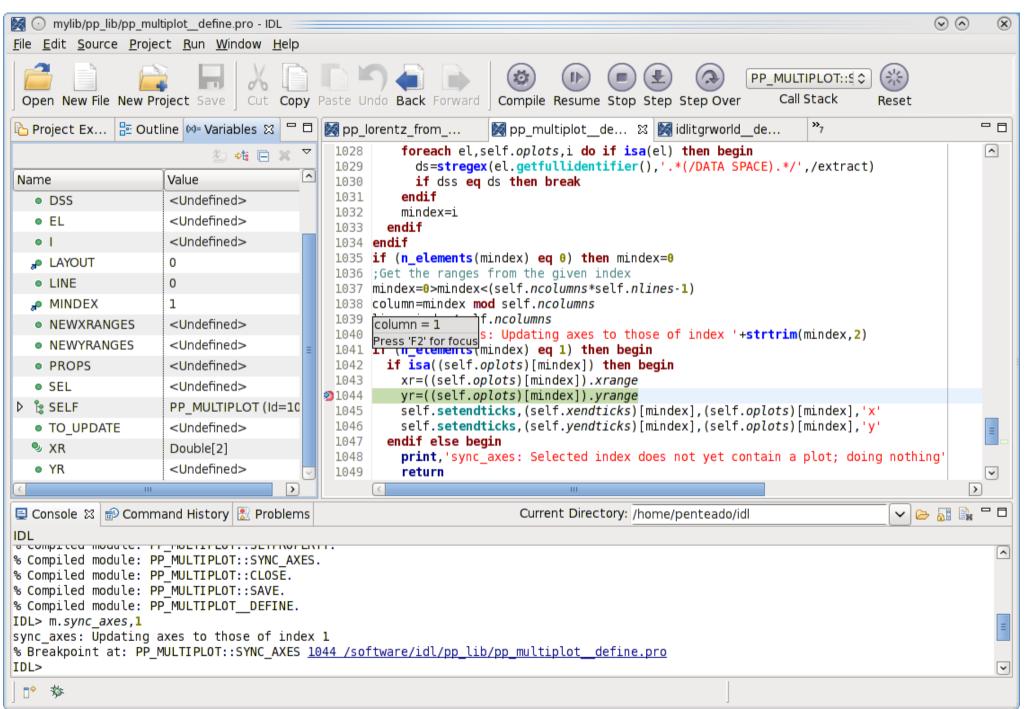
• Like seeing what goes on inside a machine, while it runs. Much easier to see where the problem is.

The most common debugging approach:

- If the program crashes, see which line of code caused it.
- Inspect the program's variables, and how they change during program execution.

A common, slow, tiresome alternative is fill the program with *prints*, to know where it is, and the values / characteristics of some variables.

• Debuggers allow interactive inspection, much faster and more flexible than prints.


Debug – what does a debugger do?

Runs the code, observing where it goes and what it does.

When an interruption happens (error, interactively, or reaching a breakpoint), the debugger provides:

- Contents, type and dimensions of **every variable** in scope.
- Evaluation / visualization / function calling / analysis of expressions with the variables.
- Arguments used when the current function was called.
- Call stack the sequence of function calls that led to the current point.
- Call stack navigation change the current scope among different points in the call stack.
- Incremental code execution take gradual steps, to see the changes that happen when each [line / function / code fragment] is executed. Possibly skipping lines that cause trouble.
- Change the values in some variables, before resuming execution.

Debug – example (Eclipse, integrated to IDL \geq 7)

Debug – example (Spyder)

Debug – example (IPython)

```
[penteado@javelina r4]$ python -m pdb /home/penteado/MOD/acepairs.py -f
56570.8292426.sex
> /home/penteado/MOD/acepairs.pv(4)<module>()
-> import sys, re, string, os, getopt, math, numpy
(Pdb) b /home/penteado/MOD/acepairs.py:890
Breakpoint 1 at /home/penteado/MOD/acepairs.py:890
(Pdb) c
[ 56570.8292426 56570.8311639 56570.8330852 56570.8350065 56570.8369278
  56570.8388491 56570.8407704]
starting to find pairs
> /home/penteado/MOD/acepairs.py(890)find_pairs()
-> T1 = KDTree(self.pos[group])
(Pdb) dir()
['group', 'i', 'llim', 'pair_1st', 'pair_2nd', 'rad', 'self', 't', 'ulim']
(Pdb) ulim
56570.831163899995
(Pdb) bt
 /share/apps/local/Ureka/python/lib/python2.7/bdb.py(400)run()
-> exec cmd in globals, locals
  <string>(1)<module>()
  /home/penteado/MOD/acepairs.py(940)<module>()
-> process()
  /home/penteado/MOD/acepairs.py(82)process()
-> pairs = dataset.find_pairs(opt.maxpairsep)
> /home/penteado/MOD/acepairs.py(890)find_pairs()
-> T1 = KDTree(self.pos[group])
(Pdb) dir(self)
['__doc__', '__init__', '__module__', 'clubs', 'data', 'diff', 'filename',
'tbins', 'times']
```

Debug – programming pearls

Don't debug standing up. It cuts your patience in half, and you need all you can muster, Dave Storer, Cedar Rapids,Iowa

Testing can show the presence of bugs, but not their absence. Edsger W. Dijkstra, University of Texas

Each new user of a new system uncovers a new class of bugs. Brian Kernighan, Bell Labs

The first step in fixing a broken program is getting it to fail repeatably. Tom Duff, Bell Labs

http://users.erols.com/blilly/programming/Programming_Pearls.html

Some references

Tutorial: Debugging your Python Applications with pdb https://www.youtube.com/watch?v=bZZTeKPRSLQ

The IPython Notebook (including video demo): http://ipython.org/notebook.html

The Notebook Gallery (including the book *Lectures on Scientific Computing with Python*, written as IPython Notebooks): https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

Spyder video tutorial: https://www.youtube.com/watch?v=4Iu7UrZXzEY (one of several from Firebox Training, http://www.fireboxtraining.com/blog/python-tutorials)