

Programming
Concepts:
Strings

Paulo Penteado

http://www.ppenteado.net/pc/

http://xkcd.com/208/

http://www.ppenteado.net/pc/
http://xkcd.com/208/

Strings – definition

A string is a variable representing text, as a sequence (a string) of characters.

Every programming language has at least one standard variabe type to represent and
process strings.

It is one of the most often needed types, for everything. Exs:

● Inform the user
● File names
● Identifiers (elements, dates, names, programs, algorithms, objects, properties, etc.)
● File input and output (though not all data files are made with text)
● Building commands1
● Most databases and web applications are string-centric

Among the basic variable types strings are the most complex to process.

Processing strings is not only prints and reads.

Strings - implementations

Programming languages vary widely in how they support strings.

There are dynamic and static strings:

➔ Static strings have a set number of characters (or maximum number of characters),
which cannot be changed.
➔ Trying to access characters beyond the end of the string can cause varied results:

truncated strings, program dying (segfault), strings extending into other variables, or
even big security holes.

➔ Exs: C, Fortran

➔ Dynamic strings: the number of characters can be changed at any time, with no preset
limits.
➔ Exs: C++, Java, IDL, R, Python, Perl

Some languages have different types for individual characters and strings (made of zero or
more characters): C, C++, Java.

Some languages have several types to handle strings, with differing functionality.

http://xkcd.com/1354/

http://xkcd.com/1354/

http://xkcd.com/1354/

http://xkcd.com/1354/

Strings - encoding

What makes up a string?

● Computers only “know” numbers (in binary).

● Nothing makes the contents of a variable or file intrinsically text. They are only 0s and 1s.

● The mapping between binary numbers and text is determined by the encoding, just
like integer and real numbers are also encoded into binary digits.

● Most languages assume a specific encoding; some have different types for different
encodings, and some may use string objects that can produce different encodings.

In ancient times (1980s) encoding was always the same: ASCII (American Standard Code for
Information Interchange):

● 1 byte (7 or 8 bits) per character - 28 (256) or 27 (128) different characters.

● A standard table defines which character is encoded by each number in the range 0-127:

String encodings - ASCII

String encodings - ASCII

Not all ASCII character are visible (printable). Some are whitespace (space, tabs, etc.),
other are some form o control character (null, CR, LF, etc.).

Zero is reserved for control, meaning either an empty string (made of only a zero), or, in
some cases (C), the end of a string.

Characters 128-255 are not in the ASCII standard. The characters vary with the chosen
ASCII extension.

ASCII is the simplest encoding in use:: characters always have the same size in memory
(1 byte), and are easily read, processed and converted to/from numbers.

ASCII still is the most common encoding in scientific programming, but not the only
one.

Line termination varies among systems. The most common choices:
● Unix-like systems (Linux, Max OS X): LF (LineFeed; ASCII 10)
● Windows: CR (Carriage Return; ASCII 13) followed by LF (ASCII 10)
● Mac OS 9 and earlier: CR (ASCII 13)

ASCII does not mean the same as “text file”.

In recent years, Unicode encoding, in its many forms, is becoming more widespread.

String encodings - ASCII

Why not always use ASCII?

It is not enough. It does not contain, for instance:

● Modified characters (diacritical marks, cedilla)

● Math symbols (beyond the very basic + - . * / ^ ! % > < =)
➔ Ex: ∂ ∑ ∫ ± ≥ ≤ × ∞ ≠ℝ ℤ ∀ ∃ ∮ ≌ ∇

● Physical symbols
➔ Ex: Å µ ☉ ⊕

● Greek letters

● Other symbols
➔ Ex: → ↔ € ª ° £ ¥ ¿ ¡⇌ ⇛

● Characters from other languages (including those of many symbols, such as the forms
used for Chinese and Japanese).

String encodings - Unicode

How to overcome the ASCII limitations?

The only widely used standard today is Unicode.

Developed to be “the one code”, with “every” character from “every” language, with metadata
(data describing the characters).

It is not immutable, additions are decided by the Unicode Consortium (
http://www.unicode.org/).

http://www.unicode.org/

There are two parts to Unicode: the catalog (only one) and the encodings (many):

The catalog is independent from encodings:

“In Unicode, the letter A is a platonic ideal. It's just floating in heaven: A

This platonic A is different than B, and different from a, but the same as A and A and A.

The idea that A in a Times New Roman font is the same character as the A in a Helvetica font, but
different from "a" in lower case, does not seem very controversial, but in some languages just figuring
out what a letter is can cause controversy.

Is the German letter ß a real letter or just a fancy way of writing ss? If a letter's shape changes at the end
of the word, is that a different letter? Hebrew says yes, Arabic says no.

Anyway, the smart people at the Unicode consortium have been figuring this out for the last decade or
so, accompanied by a great deal of highly political debate, and you don't have to worry about it. They've
figured it all out already.”

from The absolute minimum every software developer absolutely, positevely, must know
about Unicode and character sets (no excuses!),

http://www.joelonsoftware.com/articles/Unicode.html

String encodings - Unicode

http://www.joelonsoftware.com/articles/Unicode.html

The catalog has data about the characters, which are used in queries and to identify them,
including names and properties: printable, numeric, alphanumeric, capital, blank,
language, math, etc.

Exs:
Unicode Character 'LATIN CAPITAL LETTER A' (U+0041)
Name LATIN CAPITAL LETTER A
Block Basic Latin
Category Letter, Uppercase [Lu]
Combine 0
BIDI Left-to-Right [L]
Mirror N
Index entries Latin Uppercase Alphabet, Uppercase Alphabet, Latin

Capital Letters, Latin
Lower case U+0061
Version Unicode 1.1.0 (June, 1993)

Unicode Character 'INTEGRAL' (U+222B)
Name INTEGRAL
Block Mathematical Operators
Category Symbol, Math [Sm]
Combine 0
BIDI Other Neutrals [ON]
Mirror Y
Index entries Integral Signs, INTEGRAL
See Also latin small letter esh U+0283
Version Unicode 1.1.0 (June, 1993)

(results from http://www.fileformat.info/info/unicode/char/search.htm)

∫

A

String encodings - Unicode

http://www.fileformat.info/info/unicode/char/search.htm

Unicode Character 'ANGSTROM SIGN' (U+212B)
Name ANGSTROM SIGN
Block Letterlike Symbols
Category Letter, Uppercase [Lu]
Combine 0
BIDI Left-to-Right [L]
Decomposition LATIN CAPITAL LETTER A WITH RING ABOVE (U+00C5)
Mirror N
Old name ANGSTROM UNIT
Index entries ANGSTROM SIGN
Lower case U+00E5
Comments non SI length unit (=0.1 nm) named after A. J. Ångström,

Swedish physicist, preferred representation is U+00C5
Version Unicode 1.1.0 (June, 1993)

Unicode Character 'GREEK SMALL LETTER ZETA' (U+03B6)
Name GREEK SMALL LETTER ZETA
Block Greek and Coptic
Category Letter, Lowercase [Ll]
Combine 0
BIDI Left-to-Right [L]
Mirror N
Upper case U+0396
Title case U+0396
Version Unicode 1.1.0 (June, 1993)

(results from http://www.fileformat.info/info/unicode/char/search.htm)

ζ

Å

String encodings - Unicode

http://www.fileformat.info/info/unicode/char/search.htm

Unicode Character 'NABLA' (U+2207)
Name NABLA
Block Mathematical Operators
Category Symbol, Math [Sm]
Combine 0
BIDI Other Neutrals [ON]
Mirror N
Index entries difference, backward, backward difference, del, NABLA
Comments backward difference, gradient, del, used for Laplacian

operator (written with superscript 2)
See Also white down-pointing triangle U+25BD
Version Unicode 1.1.0 (June, 1993)

Java Data
string.toUpperCase() ∇
string.toLowerCase() ∇
Character.UnicodeBlock MATHEMATICAL_OPERATORS
Character.charCount() 1
Character.getDirectionality() DIRECTIONALITY_OTHER_NEUTRALS [13]
Character.getNumericValue() -1
Character.getType() 25
Character.isDefined() Yes
Character.isDigit() No
Character.isIdentifierIgnorable() No
Character.isLetter() No
Character.isLetterOrDigit() No
Character.isLowerCase() No
Character.isWhitespace() No
(...)

(results from http://www.fileformat.info/info/unicode/char/search.htm)

∇

String encodings - Unicode

http://www.fileformat.info/info/unicode/char/search.htm

Strings – Unicode encodings

There are two common encodings in the western world:

● UTF-8

● ISO 8859-1 (also called Latin 1)

Unicode text, by itself, does not inform what is the encoding. The same sequence of bytes
can mean different texts, depending on the encoding assumed.

● Software may assume, ask or guess the encoding.

All common Unicode encodings have ASCII as a subset: the 128 ASCII characters are
coded identically to ASCII.

● Unicode software writing only ASCII characters produces exactly the same output
as ASCII.

Strings – Unicode support

Languages vary widely

● Do not know Unicode (on;y use ASCII): C, Fortran

● Use ASCII natively (including for sourcecode), but have some variable types and
libraries to to process Unicode: C, C++, IDL, R.

● Use Unicode natively (including in sourcecode), and have extensive Unicode string
support: Java, Python, Perl

Often (even when Unicode can be used in sourcecode), Unicode characters are written
through ASCII with escape codes:

IDL> p=plot(/test,title='!Z(00C5,222B)')

C, C++, Java, Python: "\u2207"

References:
Characters vs. bytes
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
The absolute minimum every software developer absolutely, positively must know about
Unicode and character sets (no excuses!)
http://www.joelonsoftware.com/articles/Unicode.html
Unicode character search
http://www.fileformat.info/info/unicode/char/search.htm

produces Å∫

produces ∇

http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://www.joelonsoftware.com/articles/Unicode.html
http://www.fileformat.info/info/unicode/char/search.htm

Strings – basic processing

Spend some time learning the toolkit your language provides.

Most common operations (in IDL syntax):

● Concatenation
IDL> a= 'some'
IDL> b=a+' string'
IDL> help,b
B STRING = 'some string'

● Sorting

IDL> help,a,b
A STRING = 'some'
B STRING = 'some string'
IDL> print,b gt a
 1
IDL> c=[a,b,'9','Some',' some','some other string']
IDL> print,c[sort(c)],format='(A)'
 some
9
Some
some
some other string
some string

● Logical value:

Empty string (null string) is false, the rest is true:

IDL> c=''

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is null string ('')

IDL> c='a'

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is not empty string

Whitespace is not the same as empty string:

IDL> c=' '

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is not empty string

Strings – basic processing

● Substrings

IDL> print,strmid('abcdefg',3,2)
de

Some languages allow the use of indices to select substrings
➔ C, C++, Fortran, Python
➔ Ex: (Python)

>>> s="abcde"
>>> print(s[2:5])
cde

In IDL 8.4:

IDL> a='abcdefg'
IDL> a.substring(2,5)
cdef

● Search for characters or substrings

IDL> print,strpos('abcdefg','de')
 3
IDL> a='abcdefg'
IDL> a.indexof('d')
 3

Strings – basic processing

(IDL 8.4)

● Others

IDL> print,strlen('1234567')
 7

IDL> print,strlen(' 1234567 ')
 9

IDL> help,strtrim(' 1234567 ',2)
<Expression> STRING = '1234567'

IDL> print,strupcase('abcdEF')
ABCDEF

IDL> print,strjoin(['a','b','c'],'~')
a~b~c

IDL> a='some random text'
IDL> a.replace('random','specific')
some specific text

IDL> print,strsplit('temperature=19.8/K','=/',/extract),format='(A)'
temperature
19.8
K

Measuring string length includes
whitespace.

Strings – basic processing

(IDL 8.4)

Strings – creation from other types

Every time you see a number, it was converted to a string. Exs (DL):

IDL> print,[-1,0,9]
 -1 0 9

IDL> print,1d0,1B,1.0
 1.0000000 1 1.00000

IDL> help,string(1d0,1B,1.0)
<Expression> STRING = ' 1.0000000 1 1.00000'

IDL> printf,unit,dblarr(3,4,3)

Strings

Puts variables in a file, as strings

Strings – explicit formatting

Often, the default way a string is created from a variable is not adequate (number of digits,
use of scientific notation, spacing, etc.)

In such cases, one must specify how to create the string (by a format).

Each language has its way to specify a format, but there are two common standards: C-like
and Fortran-like.

Fortran style

IDL:

IDL> print,1d0+1d-9
 1.0000000

IDL> print,1d0+1d-9,format='(E16.10)'
1.0000000010E+00

IDL> print,'x=',1d0+1d-9,format='(A0,F16.13)'
X= 1.0000000010000

C (“printf”) style

IDL:

IDL> print,format='(%"x=%16.10e")',1d0+1d-9
x=1.0000000010e+00

Python:

In [20]: print("x=%16.10e" % (1e0+1e-9))
x=1.0000000010e+00

No explicit format (default)

Strings – explicit formatting

Strings - Fortran-style formatting

(just the main specifiers)

Ex (IDL):

IDL> print,'x=',1d0+1d-9,format='(A0,F16.13)'
X= 1.0000000010000

There are modifiers for signs, exponents, leading zeros, line feed, etc.

Code Meaning Example(s)

A String '(A)', '(10A)'

I Integer (decimal) '(I)', '(10I)','(-2I)'

B Integer (binary) '(B)', '(10B)'

Z Integer (hexadecimal) '(Z)', '(10Z)'

O Integer (octal) '(O)', '(10O)'

F Real (fixed point) '(F)','(F5.2)'

E, D Real (floating point) '(E)','(D16.10)'

G Real (fixed or floating, depending on value) '(G)','(G10)'

“” String literal '(“x=”,I10)'

X blanks '(A,10X,I)'

Strings – C-style formatting (printf)
(just the main specifiers)
String with fields to be replaced by values, marked by codes with %

Ex. (Python):
In [20]: print("x=%16.10e" % (1e0+1e-9))
x=1.0000000010e+00

There are modifiers for signs, exponents, leading zeros, line feed, etc.

Code Meaning Eample(s)

d,i Integer, decimal (int) %d, %5d, %+05d

u Integer, unsigned (unsigned int) %u, %7u

f,F Real, fixed-point (double, float) %f, %13.6f

e,E Real, floating point (double, float) %e, %16.10e

g,G Real, either fixed or floating point, depending on value (double,
float)

%g, %7.3G

x,X Integer, unsigned, hexadecimal (unsigned int) %x, %10X

o Integer, unsigned, octal (unsigned int) %o, %5o

s String (string) %s, %10s

c Character (char) %c

p Pointer – C-style - (void *) %p

% Literal % %%

Strings – implicit conversion to other types

Exs (IDL):

IDL> help,fix(['17',' 17 ','17.1',' -17 ','9 8'])
<Expression> INT = Array[5]

IDL> print,fix(['17',' 17 ','17.1',' -17 ','9 8'])
 17 17 17 -17 9

IDL> print,double(['17',' 17 ','17.1',' -17 ','9 8'])
 17.000000 17.000000 17.100000 -17.000000
 9.0000000

IDL> readf,unit,a,b,c,d

IDL> a=0d0
IDL> b=0.0
IDL> c=0
IDL> reads,'17.1d0 18.9d0 -9',a,b,c
IDL> help,a,b,c
A DOUBLE = 17.100000
B FLOAT = 18.9000
C INT = -9

Converts the string into the types of the variables
a,b,c,d

When default conversion is not enough, a format can be specified

IDL> a=0d0
IDL> b=0.0
IDL> c=0
IDL> reads,'17.1d0 something 18.9d0,-9',a,b,c
% READS: Input conversion error. Unit: 0, File: <stdin>
% Error occurred at: $MAIN$
% Execution halted at: $MAIN$

It did not work, because alone it does not know what to do with the “something”. Using a
format:

IDL> reads,'17.1d0 something 18.9d0,-9',
a,b,c,format='(D6.1,11X,D6.1,1X,I)'

IDL> help,a,b,c
A DOUBLE = 17.100000
B FLOAT = 18.9000
C INT = -9

The format instructed IDL to read a double (D6.1), skip 11 characters (11X), read a double
(D6.1), skip one character (1X), and read an integer (I).

Variables have to be created, to determine the
types for the conversion

Strings – conversion to other types

Strings – other examples

● Simple tests (ex. IDL):

IDL> str=['a.fits','a.FITS','a.fitsa','ab.fits','abc.fits']

IDL> print,strmatch(str,'*.fits')
 1 0 0 1 1

IDL> print,strmatch(str,'*.fits',/fold_case)
 1 1 0 1 1

IDL> print,strmatch(str,'*.fits*',/fold_case)
 1 1 1 1 1

IDL> print,strmatch(str,'?.fits')
 1 0 0 0 0

IDL> print,strmatch(str,'??.fits')
 0 0 0 1 0

Strings – other examples

● Encodings (Ex. Python 3):

>>> s="infinite money: ∞\N{euro sign}"

>>> print(s)
infinite money: ∞€

>>> print(ascii(s))
'infinite money: \u221e\u20ac'

>>> print(s.encode('utf-8'))
b'infinite money: \xe2\x88\x9e\xe2\x82\xac'

Regular expressions - definition

Regular expressions, (regex, regexp) are the most powerful tool to specify properties of
strings.

Regex are a language, implemented similarly on most programming languages.

What are they for?

The interpreter (regular expression engine) gets the string and the expression, and
determines whether the string match that expression.

In some cases, the interpreter can also inform which parts of the string match which part of the
regex, and extract these parts.

Regular expressions – use cases
● Separate parts of strings

➔ Find lines with names, values and comments, and extract these pieces:

Scalar with a comment (as in a FITS file):

'SLITPA = 351.979 / Slit position angle'

1D array spanning several lines

'BAND_BIN_CENTER = (0.350540,0.358950,0.366290,0.373220,0.379490,
0.387900,1.04598)'

Scalars in different formats:

'Total Mechanical Luminosity: 1.5310E+03'
'resources_used.walltime=00:56:03'

Pieces of names:

'60.63 1.7836E-20 2.456 T FeIX((3Pe)3d(2PE)4p_1Po-3s2_3p6_1Se)'

Dates, separating year, month, day, hour, minute, second:

'DATE-OBS= '2006-12-18 ' / universal date of observation'
'DATE_TIME = 2010-07-19T16:10:32'
'START_TIME = "2006-182T22:51:02.850Z"'

● Separate pieces of strings
➔ Extract pieces of files names, because they mean something about the file contents:

'spec/dec18s0041.fits'
'scam/dec18i0054.fits'
'15_7_mts_hm/pixselh_mr15.sav'
'15_7_mts_hw/pixselh_mr15.sav'
'16_3_mts_hw/pixselb_mr16.sav'
'readmodel5l_-1_0.00010000_1.0000_r05_030_08196_0.100000_0.05000000_10.00.eps'

● Determine whether a string represents a number (integer or real, fixed or floating point).

● Locate identifiers in file contents. Exs:
➔ Catalog identifiers in the middle of the text
➔ Web addresses (http, ftp, etc.)
➔ File names
➔ Form values
➔ Data elements in text

Regular expressions – use cases

Regular expressions – simple example
Ex. (IDL): find file names with some property:

IDL> print,files,format='(A)'
CM_1477475933_1_vis.cub
CM_1477476864_1_ir.cub
CM_1477476864_1_irg.cub
CM_1477476864_1_vis.cub
CM_1477477826_1_ir.cub
CM_1477477826_1_irg.cub
CM_1477477826_1_vis.cub
mosaic2.cub

IDL> print,stregex(files,'.+irg\.cub',/boolean)
 0 0 1 0 0 1 0 0

The regex '.+irg\.cub' specifies:
● One or more occurrences (+) of any character (.),
● Followed by an occurrence of irg.cub (the period is escaped (with the backslash), to

be understood as a literal period, not its special meaning.

This use of the interpreter (stregex) returns a true/false result for each string it gets
(files), telling whether that string matches the regex.

This use of regex is overkill. It would have been easier to do strmatch(files,'*irg.cub').

Ex. (IDL): Determine which strings represent a date in the format yyyy-mm-dd:

IDL> strs=['20100201','2010-02-01','2010-2-1','aaaa-mm-dd','T2010-02-01J']
IDL> print,stregex(strs,'[0-9]{4}-[0-9]{2}-[0-9]{2}',/boolean)
 0 1 0 0 1

This regex means:
● 4 repetitions ({4}) of digits (characters in the range [0-9]),
● Followed by (-),
● Followed by 2 repetitions ({2}) of digits ([0-9]),
● Followed by (-),
● Followed by 2 repetitions ({2}) of digits ([0-9]).

A slightly more complex regex could match the 3 date formats above. It could also reject the
last expression (which has extra characters before and after the date).

Regular expressions – simple example

Regular expressions - rules

A regex with “normal”* characters specifies a string with those characters, in that order.

● Ex: 'J' is a regex that matches any string containing J. 'JA' is a regex that only matches
strings containing 'JA'.

● Exs. (IDL):

IDL> strs=['J','JJJJJ','aJA','j','aJa']

IDL> print,stregex(strs,'J',/boolean)
 1 1 1 0 1

IDL> print,stregex(strs,'JA',/boolean)
 0 0 1 0 0

*some characters have special meaning in regular expressions (shown ahead).

These symbols have special meanings. To represent literally that symbol, is must be escaped
with a \:

Symbol Meaning example Match
\ Escape: the following character must be interpreted

literally, not by its special meaning.
'\?' '?, 'a?a'

. Any character 'a.b' 'ajb', 'aab',
'abb', 'jafbc'

+ One or more repetitions of the preceding element. 'a+b' 'ab', 'aab', 'bab',
'baabh'

() Subexpression: groups characters so that several of
them are affected by the modifiers (like parenthesis
in math).

'(ab)+c' 'abc', 'ababc',
'dabababcg'

* Zero or more repetitions of the preceding element. 'a*b' 'ab','b','aab',
'caaabg'

? Zero or one occurrence of the preceding. element 'a?b' 'b', 'ab',
'cabd', 'cbd'

| Alternation: either one of the two elements. 'a|bc' 'ac', 'bc',
'jacd', 'jbcd'

{n} Exactly n repetitions of the preceding element. 'a{2}b' 'aab', 'daaabg'

{n1,n2} From n1 to n2 repetitions of the preceding element. 'a{1,2}b' 'ab', 'aab',
'aaab', 'gaaabbd'

^ Anchor: beginning of string. '^ab' 'ab', 'abb'

$ Anchor: end of string. 'ab$' 'ab','aab'

[] Value set (shown ahead)

Regular expressions – special characters

[] means a set a value, which may be:

● A set of things to match.
➔ Ex: '[abc]' means any of the characters a,b,c: Ex. Matches:
'a','b','c','ab','ha'.

● A set of things not to match
➔ '[^abc]' means anything other than a, b ou c: Ex matches:

 'd', 'jgs', 'gg'.

● Value ranges
➔ '[0-9]' any digit
➔ '[0-9a-zA-Z]' any digit or letter

● Value classes
➔ Special names for some types of values (in IDL, these come delimited by [::]):
➔ ex: '[[:digit:]' means the same as '[0-9]'.

Regular expressions – value sets

Regular expressions – value classes

Class meaning

alnum Alphanumeric characters: 0-9a-zA-Z

alpha Alphabetic chracters: a-zA-Z

cntrl ASCII control characters (not printable, codes 1 to 31 and 127).

digit Digits (decimal): 0-9

graph Printable characters: ASCII 33 to 126 (excl. space).

lower Lower case letters: a-z

print Printable characters “imprimíveis” (visible plus space): ASCII 32 to 126.

punct Punctuation: !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

space Whitespace: space, tab, vertical tab, CR, LF (ASCII 32 and 9-13).

upper Capital letters: A-Z

xdigit Hexadecimal digits: 0-9A-Fa-f

< Beginning of the word (“word”meaning a sequence of non-space characters).

> End of word.

These are just the main classes. Some languages have many others.

Regular expressions - examples

Determine whether a string represent a number. (Ex. IDL):

IDL> str=['9','-18',' 8.75','-8.1','.2','-.459','1.3E9','-9.8d7','a18.8d0','3.2f5']

●Integers:

IDL> intexpr='^[-+]?[0-9]+$'

IDL> print,stregex(str,intexpr,/boolean)
 1 1 0 0 0 0 0 0 0 0

●Floating point:

IDL> fpexpr='^[-+]?(([0-9]*\.?[0-9]+)|([0-9]+\.?[0-9]*))([eEdD][-+]?[0-9]+)?$'

IDL> print,stregex(str,fpexpr,/boolean)
 1 1 0 1 1 1 1 1 0 0

Optional
sign

1 or
more
digits

Optional
sign

0 or more digits,
optionally followed by
a period, plus 1 or
more digits

1 or more digits,
optionally followed by
a period, plus 0 or
more digits

or Optional exponent:
letter (e/d), followed by
optional sign, foloowed
by 1 or more digits

Fixed-point number or floating-point number (mantissa and exponent)

Regular expressions can also be used to extract pieces of the string, that matched pieces of
the expression.

Ex (IDL): Determine whether a string contains a date, in any of these formats

IDL> dates=['2011-01-31','2011 1 31','2011/01/31','something done on
y2011m1d31 with something']

And extract the dates from the strings

IDL> expr='[0-9]{4}.[0-9]{1,2}.[0-9]{1,2}'

(4 digits)(any separator)(1 to 2 digits)(any separator)(1 to 2 digits)

IDL> print,stregex(dates,expr,/extract),format='(A)'
2011-01-31
2011 1 31
2011/01/31
2011m1d31

Now, how do we extract each piece (year, month, day)? One operation for each part?
● Could be, much a regex does it all.

Regular expressions - extraction

Ex (IDL): :
● In this case, to make for a smaller regex, we assume a simple format: (yyyy-mm-
ddThh:mm:ss.fff).

IDL> str='Stuff observed on 2011-01-31T12:39:24.983 with some instrument'
IDL> expr='([0-9]{4})-([0-9]{2})-([0-9]{2})T([0-9]{2}):([0-9]{2}):([0-9]{2}\.[0-9]{3})'

 (4 digits) - (2 digits) - (2 digits) T (2 digits) : (2 digits): (2 digits.3 digits)

IDL> pieces=stregex(str,expr,/extract,/subexpr)
IDL> print,pieces,format='(A)'
2011-01-31T12:39:24.983
2011
01
31
12
39
24.983
IDL>
d=julday(pieces[2],pieces[3],pieces[1],pieces[4],pieces[5],pieces[6])
IDL> print,d,format='(F16.6)'
 2455593.027372

Whole match
First subexpr
Second subexpr
Third subexpr
Fourth subexpr
Fifth subexpr
Sixth subexpr

Regular expressions - extraction

Regular expressions – use case

Automate filling out a web form and reading the results

Regular expressions – use case

HTML result (part of)

<h2>Observability for 17:42:15 00 00 -20:45:13 00 00</h2>Paranal Observatory
(VLT)<p><pre>
 RA & dec: 17 42 15.0, -20 45 13, epoch 2000.0
Site long&lat: +4 41 36.8 (h.m.s) West, -24 37 30 North.
Shown: local eve. date, moon phase, hr ang and sec.z at (1) eve. twilight,
(2) natural center of night, and (3) morning twilight; then comes number of
nighttime hours during which object is at sec.z less than 3, 2, and 1.5.
Night (and twilight) is defined by sun altitude < -18.0 degrees.
 Date (eve) moon eve cent morn night hrs@sec.z:
 HA sec.z HA sec.z HA sec.z <3 <2 <1.5
2015 Jun 1 F -6 23 16.2 -1 04 1.0 +4 15 1.9 9.4 8.6 7.0
2015 Jun 15 N -5 27 3.7 -0 06 1.0 +5 15 3.2 10.3 8.7 7.0
2015 Jul 1 F -4 20 2.0 +1 00 1.0 +6 21 14.4 9.5 8.7 7.0
2015 Jul 15 N -3 21 1.4 +1 58 1.1 +7 16 down 8.5 7.7 6.8
2015 Jul 30 F -2 16 1.2 +2 57 1.3 +8 10 down 7.4 6.6 5.7
2015 Aug 13 N -1 16 1.1 +3 51 1.7 +8 58 down 6.4 5.6 4.7
2015 Aug 29 F -0 08 1.0 +4 50 2.5 +9 48 down 5.3 4.5 3.6
2015 Sep 12 N +0 52 1.0 +5 40 4.5 +10 29 down 4.3 3.5 2.6
2015 Sep 27 F +1 57 1.1 +6 34 47.1 +11 12 down 3.2 2.4 1.5
2015 Oct 12 N +3 03 1.4 +7 29 down +11 54 down 2.1 1.3 0.4
2015 Oct 26 F +4 08 1.8 +8 22 down -11 25 down 1.0 0.2 0.0
2015 Nov 11 N +5 25 3.6 +9 25 down -10 35 down 0.0 0.0 0.0
2015 Nov 25 F +6 33 37.0 +10 23 down -9 47 down 0.0 0.0 0.0
2015 Dec 10 N +7 45 down +11 28 down -8 48 down 0.0 0.0 0.0
</pre>

Regular expressions – use case

Automate filling out a web form and reading the results

Regular expressions – use case

HTML result (part of)

 <tr class="plain">
 <td class="left">Counts (box 7 pixels high)</td>

 <td class="right">(1 pixel)</td>
 <td class="right">(2.0 pix resel)</td>
 <td class="right"></td>

 </tr>
 <tr class="plain">
 <td class="left"> Source</td>
 <td class="right">0.855</td>
 <td class="right">358.71</td>
 <td class="right">18.94</td>
 </tr>
 <tr class="plain">

 <td class="left"> Background</td>

 <td class="right">0.119</td>
 <td class="right">49.96</td>
 <td class="right">7.07</td>
 </tr>
 <tr class="plain">
(...)

Other tools – sed

Not everything requires writing a program.

Here are some useful command-line tools.
● They read and write the files continuously: they never have the whole file in

memory
● Useful for large files

● sed (Stream EDitor)
➔ Simple search and replace: Replace one with two
sed -e 's/one/two/g' input_file.txt > output_file.txt

➔ Search and replace with regular expressions: change date from mm-dd-yyyy to
yyyy-mm-dd:

 sed -e ''s/\([0-9]*\)-\([0-9]*\)-\([0-9]*\)/\3-\1-\2/g'
input_file.txt > output_file.txt

Other tools – awk

● AWK (Aho, Weinberger, Kernighan)

➔ Read a CSV file

name,RA,Dec,mag
obj1,17.42589765,-30.5928234,22.1
obj2,18.38947923,0.292843424,12.1
Obj3,8.2389240,-50.22099923,18.9

➔ and select only its 2nd through 4th columns, where the last is <20:

awk -F, '{if ($4<20) {print $2","$3","$4}}' input.csv

18.38947923,0.292843424,12.1
8.2389240,-50.22099923,18.9

➔ The same, but keeping the header line:
awk -F, '{if ($4<20 || NR==1) {print $2","$3","$4}}' input.csv

RA,Dec,mag
18.38947923,0.292843424,12.1
8.2389240,-50.22099923,18.9

Other tools – grep

● grep (g/re/p - Globally search a Regular Expression and Print))

➔ Simple filter on many files:
grep 'Time =' ETC*.html
ETC1.html:<p class="primary">gives: Time = 209.7815 seconds</p>
ETC2.html:<p class="primary">gives: Time = 22.8323 seconds</p>
ETC3.html:<p class="primary">gives: Time = 575.2689 seconds</p>

➔ Filter with regular expression
grep -o 'Time =' ETC*.html
ETC1.html:Time = 209.7815
ETC2.html:Time = 22.8323
ETC3.html:Time = 575.2689

➔ Filter output from other program, with regular expression: show the files starting
with a capital letter:
ls | grep -P '^[A-Z]'

➔ Show lines following match
➔ grep -A1 'Dark Current' ETC1.html

<td class="left"> Dark
Current</td>
<td class="right">0.119</td>

Some references

Software Carpentry Videos on Regular Expressions:
http://software-carpentry.org/4_0/regexp/

An Awk Primer/Awk Command-Line Examples
http://en.wikibooks.org/wiki/An_Awk_Primer/Awk_Command-Line_Examples

15 Practical Grep Command Examples In Linux / UNIX
http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/

Sed - An Introduction and Tutorial by Bruce Barnett
http://www.grymoire.com/Unix/Sed.html

This presentation is at
http://www.ppenteado.net/pc

http://software-carpentry.org/4_0/regexp/
http://en.wikibooks.org/wiki/An_Awk_Primer/Awk_Command-Line_Examples
http://www.thegeekstuff.com/2009/03/15-practical-unix-grep-command-examples/
http://www.grymoire.com/Unix/Sed.html
http://www.ppenteado.net/pc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

