

Introduction to IDL

1 - Basics

Paulo Penteado
pp.penteado@gmail.com
http://www.ppenteado.net

mailto:pp.penteado@gmail.com
http://www.ppenteado.net/

IDL

● Interactive Data Language
● General Characteristics:

– Created for data processing and visualization in Astronomy, Remote
Sensing and Medical Imaging.

– Array-centered: advanced support for vectorization in more than 1
dimension.

– Can be used interactively or programmatically.

– Extensive standard library for data processing and visualization.

– Platform-independent.

– Not free. Currently made by Exelis Vis.

– http://www.exelisvis.com/ProductsServices/IDL.aspx

http://www.exelisvis.com/ProductsServices/IDL.aspx

IDL

● Created in 1977, but still actively developed (version 8.4,
with significant improvements, is from October 2014).

● Is a complete language.
● Has many modern features (objects, platform

independence, interactive execution, vectorization, easy
creation of graphics).

● Two main characteristics to classify programming
languages:
– Compiled x interpreted
– Static types x dynamic types

Compiled x interpreted languages

● Modern languages are high level – source code close to how people communicate.
● All a computer understands is a binary code (lowest level).
● A program must be translated from the high level to the binary code.
● The translation can be done:

– Once, before the program is used – compiled languages.

– At every time the program is used (“live”) - interpreted languages.

● Some (usually) compiled languages: C, C++, Fortran.
● Some (usually) interpreted languages: R, Perl, bash.
● Languages either compiled or interpreted: IDL, Python
● Usually an IDL program is compiled on demand, the first time it is called in an IDL

session (not automatically recompiled afterwards).
● IDL can also be used interactively (interpreted).

Static x dynamic types

● Most modern programs make use of variables.
● Each variable represents data of a certain type (integer, real, character, etc.).
● In a statically typed language, each variable has to be declared with a fixed type.

Exs: C, C++, Fortran, Java.

Declaration examples (C, C++):

int number_of_days;

double temperature;

● In a dynamically typed language, a variable can come into existence at any time,
and can change type / dimensions at any time in the program. Exs: IDL, Python, R,
Perl.

Example (IDL):

a=17.9

a='some text'

a is now a real number (single precision / float)
a is now a string

Licenses and availability

● A full IDL is not free.
● License prices vary widely depending on country, status

(commercial / academic / student), number of licenses bought,
negotiation, license type (node-locked, network, etc), renewal
status.

● The IDL Virtual Machine (VM) can be downloaded freely
– Without a license, runs IDL for 7 minutes, with file writing disabled.

– Some compiled IDL programs can be run with just the VM (there are
restrictions).

– With a full IDL, some programs can be compiled and packaged with the
VM into a self-contained program that does not need licenses to run.

GDL / FL

● GNU Data Language
● A free, open-source implementation of the IDL language.
● Fully compatible with the IDL language up to IDL 7.1.
● Partially compatible with the IDL language elements introduced since

IDL 8.0.
● Not everything in the IDL standard library has been implemented in

GDL.
● http://gnudatalanguage.sourceforge.net/
● There is also another, lesser known, open source implementation,

Fawlty Language (FL).
● Both GDL and FL are still active projects.

http://gnudatalanguage.sourceforge.net/

Libraries

● Though the IDL standard library is extensive (
http://www.exelisvis.com/docs/routines-1.html), some
commonly used functions were developed by others:
– Coyote Library (David Fanning, http://www.idlcoyote.com/)

– The IDL Astronomy User's Library (Wayne Landsman,
http://idlastro.gsfc.nasa.gov/)

– Michael Galloy's (http://michaelgalloy.com/)

– Craig Markwardt's (
http://www.physics.wisc.edu/~craigm/idl/)

– Paulo Penteado's (http://www.ppenteado.net)

http://www.exelisvis.com/docs/routines-1.html
http://www.idlcoyote.com/
http://idlastro.gsfc.nasa.gov/
http://michaelgalloy.com/
http://www.physics.wisc.edu/~craigm/idl/
http://www.ppenteado.net/

Library Installation

● Most of the time, installing a library means
copying the files to some directory, then adding
that directory to IDL's search path.

● IDL's search path is where it looks for programs
when they are called.

● IDL looks in the path for a file with the same
name of the program that was called (in
lowercase letters).

Setting the search path:

● Through the workbench: Window / IDL -> Preferences -> Paths -> IDL Path
● Through the command line: pref_get / pref_set command. Ex:

● Through an environment variable (IDL_PATH). If that variable exists, the path
specified in the preferernces (Workbench / pref_set) is ignored.

● A path must always contain <IDL_DEFAULT>, usually as the first entry.
● Directories are separated by :, and a + before a directory measn to also include

all subdirectories in it.

IDL> path=pref_get('IDL_PATH')
IDL> print,path
<IDL_DEFAULT>:/software/idl/others/idlastro/pro:/software/pp_lib/src
IDL> path=path+':+/home/user/myidl/'
IDL> pref_set,'IDL_PATH',path,/commit

Using IDL

● From the command line (either a terminal, or
the Workbench) the user can interactively run
any commands, create variables, make plots,
save files, ...

Using IDL
IDL> a=dindgen(100)/99d0
IDL> print,a
 0.0000000 0.010101010 0.020202020 0.030303030
0.040404040 0.050505051 0.060606061 0.070707071
 0.080808081 0.090909091 0.10101010 0.11111111

(...)

 0.80808081 0.81818182 0.82828283 0.83838384
0.84848485 0.85858586 0.86868687 0.87878788
 0.88888889 0.89898990 0.90909091 0.91919192
0.92929293 0.93939394 0.94949495 0.95959596
 0.96969697 0.97979798 0.98989899 1.0000000
IDL> b=cos(a*!dpi)
IDL> iplot,a,b
IDL> save,file='mydata.sav',a,b

The IDL Workbench

Started by
clicking on
some icon,
or, from a
terminal,
with

idlde

(from http://www.exelisvis.com/docs/idldeoverview.html)

http://www.exelisvis.com/docs/idldeoverview.html

Language structure

● Source file types
– Programs

● Contain definitions of procedures, functions, and/or a
main program.

– Batch files
● Contain a series of single-line statements, to be executed

as if typing in the command line.

– All use the .pro extension

Procedures and Functions

● A procedure is a routine that gets called and
does things, usually using arguments/keywords
for input/output.

● A function is like a procedure, but it returns a
value (it can also use arguments and keywords
for input and output).

● Examples:

IDL> print,17.2
 17.2000
IDL> myvariable=exp(3.2d0)

Procedure call (print)

Function call (exp)

Procedure and function definition

Put this into a file called my_first_program.pro

Then,

function my_function,arg
return,2.0*arg
end

pro my_first_program,argument1,argument2,keyword1=keyword1
;this code does some really boring, trivial stuff
argument2=argument1+my_function(3.0)+keyword1
end

IDL> my_first_program,1.0,a,keyword1=5.0
% Compiled module: MY_FIRST_PROGRAM.
IDL> print,a
 12.0000

Language elements

● Anything following a ; is a comment.

– Can be in the same line of code, or in a separate line.

● Statements usually are written one per line.

● Multiple statements can be put in the same line with an & separating them.

● A long statement can be broken into several lines by ending each line to be
continued with a $.

● Variable/procedure/function names are case-insensitive.

● Text strings can be delimited by either single (') or double quotes (“).

– The string must be closed with the same type of quote mark used to open it.

● Function arguments are placed inside parenthesis.

● Arguments / keywords are separated by a ,.

Language elements

● When a procedure or function is called, IDL looks for a file with the
procedure/function name (ending in .pro) in the search path and the current directory.

– When such a file is found, IDL looks for a function/procedure definition matching
that name (in lower case).

– The file is only read until IDL finds that function/procedure.

– Any functions/procedures preceding the one being searched for get compiled.

– Any functions/procedures after that are ignored.

– If there is a .sav file with the name of the function/procedure, IDL will try to
restore the function/procedure from that file (routines can be compiled and saved
into .sav files).

– IDL will not automatically recompile a routine. If you update a source code after it
was compiled, it will only have effect if you ask IDL to compile it, or reset the
session.

Language elements

● In the previous example, calling my_first_program will cause IDL to look for a
file called my_first_program.pro.

● When that file is found, first my_function gets compiled, then
my_first_program gets compiled.

● Just calling my_function, when t has not been compiled, will not find it, since
IDL will look for a file called my_function.pro.

● After my_first_program.pro has been compiled, my_function can be used.

● To request IDL to compile the file, without running anything, use

– .compile my_first_program

● Or reset the session, by either exiting and starting IDL, or with

– .reset_session or .full_reset_session.

The 5 most used commands

● exit
● .full_reset_session

– Almost the same as exiting and restarting IDL: erases
variables, forgets all compiled routines, closes all
graphics windows and open files, etc.

● ?

– Opens the IDL help in a web browser. If followed by a
routine name (ex: ?plot), opens the help in that
routine's page.bles, among many other things. Exs:

The 5 most used commands

● print

– Produces a text representation of one or more
values (its arguments). Exs:

IDL> print,exp(2.7),cos(!dpi),' potato soup'
 14.8797 -1.0000000 potato soup
IDL> print,!dpi
 3.1415927
IDL> print,!dpi,format='(E22.15)'
 3.141592653589793E+00

The 5 most used commands

● help

– Shows information about variables, among many
other things. Exs:

IDL> a=12
IDL> b='salad'
IDL> c=[1,9,7]
IDL> help
% At $MAIN$
A INT = 12
B STRING = 'salad'
C INT = Array[3]
IDL> help,b
B STRING = 'salad'

Operators
= Assignment

+ - * / Basic math

+ Concatenation of strings, lists and hashes (a='some '+'string')

** Exponentiation

mod Modulo (5 mod 2 is 1)

++ -- Increment / decrement by one

* Pointer dereference

eq ne Equal to, not equal to

gt lt Greater than, Less than

ge le Greater than or equal to, less than or equal to

Matrix product

. Method invocation / field access

-> Method invocation

and or not Bitwise operators

&& || ~ Logical operators

> The larger of the two. Ex: 3 > 4 is 4.

< The smaller of the two. Ex: 3 < 4 is 3.

Compound assignment

● An operator combined with =.

● Ex: +=:

– a+=9 means a=a+9

● The same idea for other compound operators:
– -=, *=, /=, etc.

Control structures

● if .. then .. else

IDL> if (a gt 7) then print,'a is greater than 7' else print,'not'
a is greater than 7

if (a gt 9) then begin
 b=78
 a=a-b
endif else begin
 b=0
 c=cos(17.9)
endelse

Control structures

● case

x=5
CASE x OF
 1: PRINT, 'one'
 2: PRINT, 'two'
 3: PRINT, 'three'
 4: PRINT, 'four'
 ELSE: BEGIN
 PRINT, 'You entered: ', x
 PRINT, 'Please enter a value between 1 and 4'
 END

(from http://www.exelisvis.com/docs/case.html#Addition)

http://www.exelisvis.com/docs/case.html#Addition

Control structures

● switch
PRO ex_switch, x
 SWITCH x OF
 1: PRINT, 'one'
 2: PRINT, 'two'
 3: PRINT, 'three'
 4: BEGIN
 PRINT, 'four'
 BREAK
 END
 ELSE: BEGIN
 PRINT, 'You entered: ', x
 PRINT, 'Please enter a value between 1 and 4'
 END
 ENDSWITCH
END

IDL>ex_switch, 2
two
three
four

Control structures

● for loops

IDL> for i=3,7 do print,i
 3
 4
 5
 6
 7
IDL> for i=3,7,2 do print,i
 3
 5
 7

Control structures

● for loops

● foreach loops will be discussed after we talk about
arrays, lists and hashes.

for i=3,7 do begin
 a=sqrt(i)
 print,i,a
endfor

Control structures

● while .. do

● If the condition is true, keeps repeating the
statement / block until it becomes false.

a=9
while (a lt 13) do begin
 a=a+0.8
 print,a
endwhile

Control structures

● repeat .. until

● Repeats a statement or block until the condition
becomes true. The statement / block is
executed at least once.

● Ex:A = 1

B = 10

REPEAT A = A * 2 UNTIL A GT B

REPEAT BEGIN
 A = A * 2
ENDREP UNTIL A GT B

(from http://www.exelisvis.com/docs/REPEAT___UNTIL.html)

http://www.exelisvis.com/docs/REPEAT___UNTIL.html

A few more elements

● break

– When inside a loop, program execution jumps to the next
line after the end of the loop.

● continue

– When inside a loop, program execution goes to the
beginning of the loop, for the next iteration (if there is one).

● stop

– Interrupts a program execution. The command line will be at
the point the program was stopped, with all the variables
acessible.

A few more elements

● ? :

– Ternary conditional assignment operator.

– Example:

a=b gt 9 ? 10 : 20

is a way of saying

if (b gt 9) then a =10 else a=20.

Logical values

● Before IDL 8.4, there was no boolean (true/false) type.
● Variables / expressions of any type can be interpreted

for true/false:
– If the type is not integer: zero or null values (empty string,

null pointer, null object) are false; everything else is true.

– If the type is integer, it depends on a compilation flag:
● By default, integers are interpreted bitwise: even numbers are

false, odd numbers are true.
● If using 'compile_opt logical_predicate', zero is false,

anything else is true – as most other languages do.

Batch files

● If you put a series of single statements into a
.pro file, it can be executed as if they were
being typed on the command line:
– @my_batch_file

– This will run everything in my_batch_file.pro.

– The batch file cannot contain blocks (begin .. end)
or routine definitions.

Journal files

● Create a log file that is also a batch file:

● Result (myjournal.pro):

IDL> journal,'myjournal.pro'
IDL> a=12.7
IDL> print,a-cos(1.8)
 12.9272
IDL> journal

; IDL Version 8.4 (linux x86_64 m64)
; Journal File
; Date: Thu Jan 15 06:17:37 2015

a=12.7
print,a-cos(1.8)
; 12.9272

Main programs

● A .pro file can contain a main program.

– Written just like a procedure, but without
arguments/keywords, without the declaration line
(“pro myprocedure,arg1,arg2,...”)

– Executed with “.run myprogram”, which will look
for a main program in the file myprogram.pro.

– At the end, all the program's variables are still
accessible from the command line.

– The file can contain routine definitions.

Main programs

● Example – file called my_main_program.pro:

function my_function,arg
return,2.0*arg
end

pro
my_first_program,argument1,argument2,keyword1=keyword1
;this code does some really boring, trivial stuff
argument2=argument1+my_function(3.0)+keyword1
end

my_first_program,1.8,c,keyword1=-18.9
end

Main programs

● When we run that file:

IDL> .run my_main_program
% Compiled module: MY_FUNCTION.
% Compiled module: MY_FIRST_PROGRAM.
% Compiled module: $MAIN$.
IDL> help
% At $MAIN$ 1
/homec/penteado/cpc/cpcc/new/my_main_program.pro
C FLOAT = -11.1000
Compiled Procedures:
 $MAIN$ MY_FIRST_PROGRAM

Compiled Functions:
 MY_FUNCTION

Debugger

● Integrated into the Workbench, allows easy inspection of the
state of the program, while the program is in the middle of its
execution.

● The user can run the program line by line, inspecting the
values of variables, even making plots with them.

● The user can easily see how the program got to that line in the
source code (which routine called which routine, at what line).

● Makes debugging much easier and faster than filling the
program with print statements.

● The live demo shows this better.

Some references

● The IDL Newsgroup
– https://groups.google.com/forum/#!forum/comp.lang.idl-pvwave

● Modern IDL
– Book by Michael Galloy, the best reference. Kept updated with each new IDL release.

– http://modernidl.idldev.com/

● IDL Help online
– http://www.exelisvis.com/docs/routines-1.html

● Coyote's Guide to IDL Programming (by David Fanning)
– http://www.idlcoyote.com/

● The IDL Workbench video tutorial
– https://www.youtube.com/watch?v=TTeZbFWy8YI

● This file
– http://www.ppenteado.net/idl/intro

https://groups.google.com/forum/#!forum/comp.lang.idl-pvwave
http://modernidl.idldev.com/
http://www.exelisvis.com/docs/routines-1.html
http://www.idlcoyote.com/
https://www.youtube.com/watch?v=TTeZbFWy8YI
http://www.ppenteado.net/idl/intro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

