
  

Introduction to IDL

2 - Variables

Paulo Penteado
pp.penteado@gmail.com
http://www.ppenteado.net

mailto:pp.penteado@gmail.com
http://www.ppenteado.net/


  

Variable types

What is a variable?

In the old days, just a name for a position in memory:

Instead of saying

Store integer 2 on position 47 (of the memory)
Add integer 1 to the contents of position 47
Print the contents of position 47

One could say (in pseudocode*)

int number_of_days
number_of_days=2
number_of_days=number_of_days+1
print number_of_days

Much better to use number_of_days than memory positions:
● The name gives a cue to the meaning of the number
● More readable and portable

*No specific language



  

Types

A variable is much more elaborate than just a position in memory

If I put π in memory position 435, what is in there?



  

Types

A variable is much more elaborate than just a position in memory

If I put π in memory position 435, what is in there?

?



  

Types

A variable is much more elaborate than just a position in memory

If I put π in memory position 435, what is in there?

?

No. More like:

...10011100100100101001000000010010010000111111011011000101001...

Position 435



  

Types

A variable is much more elaborate than just a position in memory

● A variable is a representation of a type in one's program.

● A type is an abstract concept
● Exs: integers, reals, strings (text), complex numbers, etc.

● Internally, these concepts do not exist: There are no reals in memory. There are (binary) 
representations of them, through rules defined by the type real.

● This concept includes rules about their use. Exs:

➔ Adding 2 integers is not the same as adding 2 reals. The processor uses different algorithms.

➔ 3/2 is 1, while 3.0/2.0 é 1.5

➔ acos(2.0) does not exist for reals, but it does for complex numbers.

➔ Strings can be coded in many different ways.

➔ Rules for ordering string may differ (does capitalization matter? where do numbers go in the 
order?)



  

Types

A variable can be much more complicated than a number or a string

● Container: stores several values, by orders, name or hierarchy
➔ Exs: vector, matrix, array, list, map, dictionary, tree, etc.

● Several values of different types, organized - Structure

● Reference to another  variable - pointer

● A representation of any complicated concept - object
➔ Data, resources and ways to operate on them
➔ It is an active variable (“smart”): not just a static data store, it can do operations.



  

Common types

Some commonly used types (standard, built-in, primitive):

Python: int, long, float, complex, str

IDL: int, string, float, double, byte, complex, ptr, obj

Fortran: integer, character, logical, real, double precision, complex, pointer

C, C++, Java: int, char, float, double

SQL: int, small int, bool, float, double

These types are common in all languages, but are not necessarily the same. Exs:

● Python' s Float usually corresponds to a double in other languages (double precision)

● IDL's  int has 16 bits, Fortran's integer usually has 32 bits

● Fortran's real might have 32 bits or 64 bits

All of IDL's types: www.exelisvis.com/docs/idl_data_types.html

http://www.exelisvis.com/docs/idl_data_types.html


  

Common types – differences for similar ideas

Types are not different only in the “nature” of the idea. Exs:

● Differently sized integers

➔ Byte: 8 bits, stores integers from 0 to 255 (28-1)

➔ int: 16 bits, stores integers from -32768 (-(215)) to 32767 (215-1)

● Precision for reals: single and double:

➔ 1.0+1e-8 is 1.0 (32bits, 6 or 7 significant digits)

➔ 1d0+1d-8 is 1.00000001 (64 bits, ~14 significant digits)

The same function/operator is usually different with different types:

● 3/2 is 1, while 3.0/2.0 is 1.5

● sqrt(-1.0) is -NaN, while sqrt(complex(-1.0)) is (0.0,1.0)



  

Types – empty type

Just as zero did not exist until modern number systems, modern languages do have empty types, 
with important uses:

● To indicate something is missing
➔ Ex: A list where each element tells which observations were taken of the corresponding 

target. Some targets may have no observations.

● To indicate no results
➔ Ex: functions that query some data source, to indicate that nothing was found.

● Undefined variables / elements
➔ Indicates an input argument must  be replaced by defaults
➔ Indicates some output argument is not required

Examples:
● None (Python)
● !null (IDL ≥8)
● NULL (R, C++, Perl)
● null (Java)



  

Types – empty type

Just as zero did not exist until modern number systems, modern languages do have empty types, 
with important uses:

● To indicate something is missing
➔ Ex: A list where each element tells which observations were taken of the corresponding 

target. Some targets may have no observations.

● To indicate no results
➔ Ex: functions that query some data source, to indicate that nothing was found.

● Undefined variables / elements
➔ Indicates an input argument must  be replaced by defaults
➔ Indicates some output argument is not required

IDL> x=[1,2,3,4,5]
IDL> print,where(x gt 2)
           2           3           4
IDL> print,where(x gt 7)
?



  

Types – empty type

Just as zero did not exist until modern number systems, modern languages do have empty types, 
with important uses:

● To indicate something is missing
➔ Ex: A list where each element tells which observations were taken of the corresponding 

target. Some targets may have no observations.

● To indicate no results
➔ Ex: functions that query some data source, to indicate that nothing was found.

● Undefined variables / elements
➔ Indicates an input argument must  be replaced by defaults
➔ Indicates some output argument is not required

IDL> x=[1,2,3,4,5]
IDL> print,where(x gt 2,/null)
           2           3           4
IDL> print,where(x gt 7)
          -1
IDL> print,where(x gt 7,/null)
!NULL



  

Number representations and their consequences

Numbers in variables are not the same as the mathematical concept.

A variable has limited memory. Therefore, a number's digits are limited:

● The amount of different numbers that can be stored is finite.

● The numbers that are representable are predefined by the type being used.

● The precision and range numbers can have are limited.

Basic number types (integers, reals) are usually the same as the native processor number types.

They usually have fixed memory size. Exs: 8, 16, 32, 64 bits (1, 2, 4, 8 bytes).

Each bit (binary digit) is a memory position, which can only hold either 0 or 1.

A type with n bits can only hold 2n different values.

The most common types have 256, 65536, ~4.3x109 (4 giga, in binary sense), or ~1.8x1019 (16 exa, in 
binary sense) different values.



  

Number representation - integers

There are types for positive (unsigned) and types for negative/positive.

Positive integers are simply the number in binary.

Ex: with 8 bits, there is room for only 0 to 255:

Decimal memory representation
0 00000000
1 00000001
2 00000010
255 11111111

Types that can take negatives are (usually) the same, with ~half the numbers being positive, at 
the beginning, then the negatives:

Ex: with 8 bits, there is only room for -128 to +127:

Decimal memory representation
0 00000000
1 00000001
127 01111111
-128 10000000
-127 10000001
-126 10000010
-2 11111110
-1 11111111



  

Integer representations – common names and sizes*

8 bits:
● byte (IDL, only positives)
● byte (Java)
● char (C, C++)
● tinyint (MySQL)

16 bits:
● int (IDL)
● short int (C++)
● short (Java)
● smallint (MySQL)

32 bits:
● integer (Fortran, R)
● long (IDL)
● int (C, C++, Java, Python,MySQL)
● long int (C, C++)

64 bits:
● long (Python)
● long64 (IDL)
● bigint (MySQL)

*In some languages, the standard does not specify which type is which size; each 
implementation may make different choices. The values above are the most common.



  

Integer representations – common names and sizes*

Literals* usually have a default type, and can be changed with modifiers:

● 9 9 of the default integer type

● 8L 8 of type long (32 bits)

● 25B 25 of type byte (8 bits)

● 12UL 12 of type unsigned long (64 bits)

*constants that appear literally inside the code



  

Number representation – consequences (integers)

What happens if you try to put in a variable a number that does not fit in it?

● In a byte type, which only holds  0 to 255, how much is 255B+1B? What about 0B-1B?

● In a short type, which only holds -32768 to +32767, how much is -32767S-2S?



  

Number representation – consequences (integers)

What happens if you try to put in a variable a number that does not fit in it?

● In a byte type, which only holds  0 to 255, how much is 255B+1B? What about 0B-1B?

● In a short type, which only holds -32768 to +32767, how much is -32767S-2S?

An overflow (or rollover). Like a car's odometer:



  

Number representation – consequences (integers)

What happens if you try to put in a variable a number that does not fit in it?

● In a byte type, which only holds  0 to 255, how much is 255B+1B? What about 0B-1B?

● In a short type, which only holds -32768 to +32767, how much is -32767S-2S?

An overflow (or rollover). Like a car's odometer:

IDL> a=255B
IDL> help,a
A               BYTE      =  255

IDL> a=a+1B
IDL> help,a
A               BYTE      =    0

IDL> print,0B-1B
 255

IDL> print,-32768S-1S
   32767

Internally (binary):

 11111111

 11111111
+  00000001

100000000
=  00000000

1000000000000000
- 0000000000000001
= 0111111111111111



  

Number representation – consequences (integers)

Not considering integer size is a common error:

Ex: In IDL, where default integers are type int (16 bits):

IDL> print,10^4
?

IDL> print,10^5
?



  

Number representation – consequences (integers)

Not considering integer size is a common error:

Ex: In IDL, where default integers are type int (16 bits):

It is not just IDL that does this. Ex (Python):

IDL> print,10^4
   10000

IDL> print,10^5
  -31072

In [28]: import numpy

In [29]: b=numpy.array((10,10),dtype='int16')

In [30]: print b
[10 10]

In [31]: b[0]=b[0]**4

In [32]: b[1]=b[0]*10

In [33]: print b
[ 10000 -31072]



  

Number representation – consequences (integers)

Not considering integer size is a common error:

Ex: In IDL, where default integers are type int (16 bits):

The result for 105 is not wrong:

● 105 is larger than the largest integer that can fit in 16 bits (32767)

● After 32767 comes -32768, then -32767, etc.

With a larger type, there is no overflow for this number:

IDL> print,10^4
   10000

IDL> print,10^5
  -31072

IDL> print,10L^5
   100000



  

Number representation – consequences (integers)

https://plus.google.com/+youtube/posts/BUXfdWqu86Q

https://plus.google.com/+youtube/posts/BUXfdWqu86Q


  

Number representation - reals

Usual types come from the IEEE 754 standard for floating point number representation and 
manipulation:

● single precision / float / real (32 bits)
● double precision / double (64 bits)

Numbers are represented by a fraction signficand, and exponent and a sign, similarly to 
scientific notation (ex: 0.31416E1), but with binary digits:

    +                           -3                                                                                  1.25
    + 1.25 × 2-3  = 0.15625

Sign Exponent Fraction Range Significant digits (decimal)
Float 1 bit 8 bits 23 bits ~±1038 6-9
Double 1 bit 11 bits 52 bits ~±10308 15-17
Quad* 1 bit 15 bits 112 bits ~±104932 33-36

*Rarely implemented



  

Number representation - reals

Single precision floats are common, but insufficient for scientific computing.

Literals / strings such as 1.0 and 1e5 might be interpreted as floats.

Doubles might be written as 1.0d0 e 1d5. But a “d” in a string usually does not change 
its interpretation.

Attention to the type used in literals:

IDL> print,1/3
       0

IDL> print,1.0/3.0
     0.333333

IDL> print,1d0/3d0
      0.33333333

IDL> print,16d0^(1/2)
       ?



  

Number representation - reals

Single precision floats are common, but insufficient for scientific computing.

Literals / strings such as 1.0 and 1e5 might be interpreted as floats.

Doubles might be written as 1.0d0 e 1d5. But a “d” in a string usually does not change 
its interpretation.

Attention to the type used in literals:

IDL> print,1/3
       0

IDL> print,1.0/3.0
     0.333333

IDL> print,1d0/3d0
      0.33333333

IDL> print,16d0^(1/2)
       1.0000000

IDL> print,16d0^(1d0/2d0)
       4.0000000



  

Number representation: +Infinity and -Infinity



  

Number representation: +Infinity e -Infinity

Produced by several functions/expressions and overflows.

IDL> help,1.0/0.0
<Expression>    FLOAT     =           Inf
% Program caused arithmetic error: Floating divide by 0

IDL> print,exp(-!values.f_infinity)
      0.00000

IDL> help,atan(1d0/0d0)/!dpi
<Expression>    DOUBLE    =       0.50000000
% Program caused arithmetic error: Floating divide by 0

IDL> print,!values.d_infinity gt 0. ;Infinity is larger than 0
   1

IDL> print,!values.d_infinity eq !values.d_infinity ;Inf is equal to itself
   1
IDL> print,exp(89.0)
          Inf
% Program caused arithmetic error: Floating overflow

Just warnings, 
not errors.



  

Number representation: +NaN and -NaN



  

Number representation: +NaN and -NaN



  

IDL> help,0./0.
<Expression>    FLOAT     =          -NaN
% Program caused arithmetic error: Floating illegal operand

IDL> help,!values.d_infinity/!values.d_infinity
<Expression>    DOUBLE    =             -NaN
% Program caused arithmetic error: Floating illegal operand

IDL> print,sqrt(-1d0)
             NaN
% Program caused arithmetic error: Floating illegal operand

IDL> print,sqrt(complex(-1d0))
(      0.00000,      1.00000)

IDL> print,!values.d_nan gt 0d0 ;NaN is not larger than anything
   0

IDL> print,!values.d_nan le 0d0 ;NaN is not smaller than anything
   0

IDL> print,!values.f_nan eq !values.f_nan ;NaN is not equal to NaN
   0

Number representation: +NaN and -NaN

Not a Number

Invalid results.

Just 
warnings, 
not errors



  

Number representation: +NaN and -NaN

Commonly used to indicate missing or nonsense data. Ex:

● Bad pixels

● Data not taken:
➔ Sky area not observed
➔ Magnitude not known for the object
➔ Region not included in the model

Better than the common practice of picking some value like 99, -99, -1 or 0:
It is a “special” value, depending on prior knowledge.
What if not value can be special (no number makes no sense)?

Lots of software know to ignore NaNs in input:

● Leave a hole in a plot.

● Ignore them when querying for maximum, minimum, mean, etc.

On most operations with NaN the result is (properly) NaN:
● Adding a number / multiplying a number to an image should not magically turn bad pixels 

(NaNs) into some number.
● NaN is not 0, 1, or any other neutral element.



  

IDL> print,1d0/0d0
        Infinity
% Program caused arithmetic error: Floating divide by 0

IDL> print,1d0/(-0d0)
       -Infinity
% Program caused arithmetic error: Floating divide by 0

IDL> print,0d0 eq -0d0
   1

Number representation: zeros (reals)

There are two zeros (+0 and -0):

Equal in comparisons, but show the difference in limits. Exs. (IDL Python):

Just 
warnings, 
not errors.



  

Number representations – reals - consequences

Just like for integers, need to consider their range. Also their precision limit.

Just 
warnings, 
not errors.

IDL> print,exp(-103.)
  1.40130e-45
% Program caused arithmetic error: Floating underflow

IDL> print,exp(-104.)
% Program caused arithmetic error: Floating underflow
      0.00000



  

Number representations – reals - consequences
The digits shown when a number is printed out do not necessarily correspond to its precision.

They may show more, or less than the precision, depending on how the number was 
printed.

IDL> print,1.0d0+1d-8
       1.0000000

IDL> print,1.0d0+1d-8,format='(E22.15)'
 1.000000010000000E+00

Since the representation is binary, only numbers that are rational in binary (sums of powers 
of 2) can be represented exactly.

IDL> print,1.0,0.1,0.7

      1.00000     0.100000     0.700000

IDL> print,1.0,0.1,0.7,format='(3E19.9)'

    ?     ?     ?



  

Number representations – reals - consequences
The digits shown when a number is printed out do not necessarily correspond to its precision.

They may show more, or less than the precision, depending on how the number was 
printed.

IDL> print,1.0d0+1d-8
       1.0000000

IDL> print,1.0d0+1d-8,format='(E22.15)'
 1.000000010000000E+00

Since the representation is binary, only numbers that are rational in binary (sums of powers 
of 2) can be represented exactly.

IDL> print,1.0,0.1,0.7

      1.00000     0.100000     0.700000

IDL> print,1.0,0.1,0.7,format='(3E19.9)'

    1.000000000E+00    1.000000015E-01    6.999999881E-01



  

Number representations – reals - consequences

In computational science, single precision is usually not enough:

● Inverting a matrix usually does not work (it seems singular, when it is not).

● Even if the data do not have 6 digits of precision, it may take double precision, since 
consecutive operations may accumulate large errors.

● We frequently get numbers with powers beyond ±38:
➔ h=6.62×10-34 J×s
➔ M

☉
=1.99×1033g

➔ M
ⴲ
=5.97x1027g

● Julian dates take many digits (1 s is 1.16x10-5 d).
➔ Ex: 2455563.024502
➔ 7 digits just to get to 1 day
➔ + 5 digits to get to ~1s

● Spherical coordinates are at the limit of single precision (1” takes 7 digits in decimal 
degrees).



  

IDL> a=4294967295UL

IDL> print,a,format='(I0)' & print,float(a),format='(F0)'
4294967295
4294967296.000000

IDL> print,a-25, format='(I0)' & print,float(a-25),format='(F0)'
4294967270
4294967296.000000

IDL> a=12345678901234567890ULL

IDL> print,a,format='(I0)' & print,double(a),format='(F0)'
12345678901234567890
12345678901234567168.000000

Number representations – reals - consequences

Integer types have more significant digits (but smaller ranges) than reals:

● A 32 bit unsigned integer holds exactly all numbers between 0 and 4294967295 (4 giga -1 , 
in binary).

● A 32 bit real can hold numbers up to ~1038, but 4294967295 does not exist (it would take 10 
decimal digits).

Comparing the 64 bit types:



  

IDL> a=dindgen(3)*!dpi

IDL> print,a
       0.0000000       3.1415927       6.2831853

IDL> print,where(a eq 3.1415927,/null)
!NULL

IDL> print,where(a eq !dpi,/null)
           1

Number representations – reals - consequences

Attention to comparison of real values. Exs (IDL):

No element is equal to 3.1415927

Element 1 is equal to !dpi

Generates an array with elements 0π, 1π, 2π



  

Number representations – reals - consequences

Attention to comparison of real values.

IDL> a=dblarr(100000)+!dpi

IDL> b=(total(a)/n_elements(a))

IDL> print,b
       3.1415927

IDL> print,b eq !dpi
?

IDL> print,b - !dpi
?

a is an array with 100000 elements equal to !
dpi

b is the sum of the elements of a, divided by 
the number of elements in a

Is b equal to  !dpi (?)



  

Number representations – reals - consequences

Attention to comparison of real values.

IDL> a=dblarr(100000)+!dpi

IDL> b=(total(a)/n_elements(a))

IDL> print,b
       3.1415927

IDL> print,b eq !dpi
   0

IDL> print,b - !dpi
  -2.6694202e-12

Usually, one can only expect reals to be equal if one is a copy of the other, and no 
processing was applied to them.

Even associativity might not be true: A+(B+C) might be different from (A+B)+C.

Results may not be identical, even with the same data, with:
● Different implementations of the same algorithm.
● Different runs of the same parallel code.

a is an array with 100000 elements equal to !
dpi

b is the sum of the elements of a, divided by 
the number of elements in a

Is b equal to  !dpi (?)

No!



  

Other variable types

Can Integers / Reals / Strings do everything?

No!

What if I need to carry around a lot of information?

Ex: When processing observations, the program needs to know, for each image:

● File name
● Number of objects detected in the image
● Coordinates of each object in the image
● Image quality measurements
● Object measurements (shape, size, flux)
● Observation date/time
● Instrument
● Exposure time
● ....



  

Other variable types

Then carrying around variables is cumbersome.

Filtering the data is even worse:

And don't you dare forget to do this to one of the 49 variables!

There must be a better way...

for i=0,20 do begin:
   do_fancy_processing(file=file[i],nsources=nosources[i],lats=lats[i],
lons=lons[i],npoints=npoints[i],obsdate=obsdate[i],filter=filter[i],
resolution=resolution[i],temperature=temparature[i],....)
endfor

w=where(lats gt 0.)
file=file[w]
nsources=nsources[w]
lats=lats[w]
lons=lons[w]
npoints=npoints[w]
obsdate=obsdate[w]
filter=filter[w]
resolution=resolution[w]
temperature=temperature[w]
...



  

Other variable types - structures

A structure* is a compound type.

● Contains several fields
● Each field is a variable, of any type (even structure)
● Each field is identified by a name

Ex:

*Not to be confused with data structure, which 
means a way to organize data (i.e., arrays, lists,
dictionaries, trees, etc.)



  

Other variable types - structures
Structure creation and use

IDL>observation={file:'something.fits',nsources:1701,lons:dblarr(1701),lats:d
blarr(1701),npoint:1208,nmoving:7,fwhm:0.58d0,mags:dblarr(1701),obsdate:'2014
-01-17-17:43:26.34'}
IDL> observations=replicate(observation,172)
IDL> help,observations
OBSERVATIONS    STRUCT    = -> <Anonymous> Array[172]
IDL> help,observations[0]
** Structure <de2578>, 9 tags, length=40880, data length=40870, refs=3:
   FILE            STRING    'something.fits'
   NSOURCES        INT           1701
   LONS             DOUBLE    Array[1701]
   LAS            DOUBLE    Array[1701]
   NPOINT          INT           1208
   NMOVING         INT              7
   FWHM            DOUBLE          0.58000000
   MAGS            DOUBLE    Array[1701]
   OBSDATE         STRING    '2014-01-17-17:43:26.34'

IDL> print,observations[0].nsources 
    1701

IDL> help,observations.nsources
<Expression>    INT       = Array[172]

IDL> foreach observation,observations do do_fancy_processing(observation)

IDL> observations=observations[where(observations.nsources gt 0)]



  

Other variable types - structures

Common uses for structures (and arrays of structures):

● Group together a lot of variables that are related:
➔ Information on observations, files, models, objects (previous example)
➔ All the many inputs and outputs of a complicated program.
➔ Represent tables of data from files / databases (each row is a structure)
➔ Contain the data from files with multiple variables (including hierarchical files, like HDF).



  

Other variable types

References / Pointers

Most languages have variables that are just references to other variables.

The meaning, occurrences and uses of references vary a lot between languages.

A reference/pointer is only a link, which points to some target.

A target may have several references pointing to it.



  

Pointers - use

A pointer's target (in IDL, a heap variable) can be pointed to by any number of pointers 
(including 0).

IDL> a=ptr_new(2.0) ;creates a pointer (a) and a target (float 2.0)

IDL> print,*a    ; * shows the pointer's target
      2.00000
IDL> b=ptr_new() ;creates a pointer to nothing (null)

IDL> print,b
<NullPointer>

IDL> print,ptr_valid(b) ;verifies whether b points to something
   0

IDL> b=a ;makes b point to the same target as a

IDL> print,*b ;*b=*a:
      2.00000



  

Pointers - use

IDL> *a=3.0 ;changes the value of a's target, which is also b's 
target

IDL> print,*b
      3.00000

IDL> *b=5.0 ;changes the value of b's target, which is also a's 
target

IDL> print,*a
      5.00000

IDL> print,a,b
<PtrHeapVar2><PtrHeapVar2>

   a=<PtrHeapVar2> b=<PtrHeapVar2>

“HeapVar2”=*a=*b

* Operator * O
pera

tor



  

A pointer that already has a target can be retargeted, by assigning to it another pointer – 
even retargeted to nothing, by assigning to it the null pointer.

IDL> a=ptr_new(2.0) ;creates a pointer and its target (float 2.0)

IDL> b=ptr_new(3.0) ;creates a pointer and its target (float 3.0)

IDL> print,a,b
<PtrHeapVar1><PtrHeapVar2>

IDL> print,*a,*b
      2.00000      3.00000

IDL> b=a ;retargets b to a's target

IDL> print,a,b
<PtrHeapVar1><PtrHeapVar1>

IDL> print,*a,*b
      2.00000      2.00000

IDL> *a=*a+2.0

IDL> print,*a,*b
      4.00000      4.00000

Now no one points to “HeapVar2” (3.0). Before IDL 8, it still exists and uses memory.

a 2.0

b 3.0

a 2.0

b 3.0

a 4.0

b 3.0

Pointers - use



  

Main uses of pointers in IDL:

● To allow changing the type/dimensions of a structure field:

● To have an array of structures, where each element has a field with a different size. Ex: 
reading multiple files, where files can be of different sizes:

Pointers - uses

IDL> 
a={temperature:19.5,wavelenghts:ptr_new(),fluxes:ptr_new()}
IDL> a.wavelenghts=ptr_new([1.3,4.9,5.8])
IDL> a.wavelenghts=ptr_new([1.3,4.9,5.8,18.2])

IDL> a=replicate({filename:'',nobjects:0,object_sizes:ptr_new()},10)
IDL> a[0].nobjects=7 & a[0].object_sizes=ptr_new(dblarr(7))
IDL> a[1].nobjects=9 & a[1].object_sizes=ptr_new(dblarr(9))
IDL> help,*(a[0].object_sizes)
<PtrHeapVar3>   DOUBLE    = Array[7]
IDL> help,*(a[1].object_sizes)
<PtrHeapVar4>   DOUBLE    = Array[9]



  

Main uses of pointers in IDL:

In a future class:

● Making “irregular arrays”: tables where each line has a different number or rows.

● Making arrays where each element can be of different type or dimensions.

Pointers - uses



  

Other variable types - objects

Objects are the next step in complexity for types:

● Integers

➔ One value, an integer with a simple binary coding.

● Reals

➔ One value, represented by a complicated standard (sign, exponent, fraction, special values).

● Structures

➔ Several values (fields) in a group, of varied types, identified by names.

➔ Code must know specifically what to do with each field. If they receive a structure of 
a different type, or with inconsistent data, they may end up doing the wrong thing.

● Objects

➔ Structures (where the data is stored) + code (which operates on the object's data)

➔ Data is kept inside the object. Only the object's routines have access to the data.

➔ The previous types are just static data stores. They do nothing. Objects are “variables that do 
stuff”.



  

Other variable types - objects

What are objects for? Why would I want one?

● Procedural (non-object) programming:
➔ There are a lot of variables around, of many different types.
➔ The programmer must know what each variable means, and what to do with them.
➔ The programmer must carry all associated variables around, and keep them valid. Ex:

➔ The programmer calls routines, giving variables to them. These routines must know 
what to do with whatever variables they are given. Ex:

What is the type of b? (array? list? dictionary?)  Does the function (mean) know what to do 
with it?

What happens if I make up a new type? Do I have to change the function (mean) so that it can 
handle the new type?

IDL> help,observations[0]
** Structure <de2578>, 9 tags, length=40880, data length=40870, refs=3:
   FILE            STRING    'something.fits'
   NSOURCES        INT           1701
   LONS             DOUBLE    Array[1701]
   LATS            DOUBLE    Array[1701]
   NPOINT          INT           1208
   NMOVING         INT              7
   FWHM            DOUBLE          0.58000000
   FLUXES            DOUBLE    Array[1701]
   OBSDATE         STRING    '2014-01-17-17:43:26.34'

Must be kept consistent. It is up 
to the programmer to make sure 
nsources, lats, lons 
and fluxes match.

a=mean(b)



  

Other variable types - objects

What are objects for? Why would I want one?

● Object-oriented programming (OOP)
➔ There are few variables visible, of different types.
● The objects contain a lot of variables inside them, but these are not visible.
● The programmer asks the variables to do things.
● The code that does these things lives inside the variable's type definition, so it knows how 

data is organized, and what to do with it.

Ex:

● Procedural programming:

This is a call to a function called mean, which is global will have to figure out what to do with 
the variable (b).

● Object-oriented programming:

This is a call to the function called mean, which belongs to the type of the variable (b), 
whatever that type is. If b is an array, array's mean will be called. If b is a list, list's mean will be 
called. There is no risk the function will get the wrong type of variable.

a=mean(b)

a=b.mean()



  

Objects x structures
A passive variable (structure) does nothing. The programmer must know the variables,

know what to do with them, and do it.



  

A passive variable (structure) does nothing. The programmer must know the variables,

know what to do with them, and do it.

An active variable (object), however, contains all the necessary variables, and knows what to do 
with them. The programmer just has to turn it on (call the object's functions):

Objects x structures



  

A passive variable (structure) does nothing. The programmer must know the variables,

know what to do with them, and do it.

An active variable (object), however, contains all the necessary variables, and knows what to do 
with them. The programmer just has to turn it on (call the object's functions):

Objects x structures



  

Objects - nomenclature

➔ Objects are variables, and are instances of classes.

➔ The class is an object's type.

➔ An instance is an example of a type::
➢ 2 is an instance of the type integer.
➢ 1.0 is an instance of the type real

➔ Objects are structures, with added routines (methods) which operate on them.

➔ Classes have inheritance:
● A new class (ClassB) can be made by inheriting from another class (ClassA).
● ClassA is a superclass of ClassB.
● Every object of ClassB is also an object of ClassA, and inherits all of ClassA's 

characteristics. It may add characteristics (data, methods), or change those it inherited.



  

Objects – why bother?
1 – Routines are subordinated to the types

When a method is called, you can be sure that only a routine that belongs to that class (or its 
superclasses) gets called. There is no mixing of functions made for different types.

IDL> l=list(5,2)
IDL> h=hash([5,2])
IDL> l.remove,1
IDL> print,l
       5
IDL> h.remove,2
IDL> print,h
5: !NULL

Each remove was made just for one class: list::remove only knows about lists.

No need for a global remove procedure, which must know how to handle anything that 
might need a remove (lists, hashes, sets, etc).

remove method from the list class: list::remove

remove method from the hash class: hash::remove



  

Objects – why bother?
2 – No need to carry many variables around over many routine calls.  The objects keep all 
the data inside them, and provide the data on demand.

;Create the object, reading the cube file 
a=pp_readcube('CM_1553510065_1_ir.cub')
;Get the core and its wavelengths
a.getproperty,core=core,wavelengths=wavs

(many code lines)

;Find out the names of the backplanes
print,a.getproperty(/backnames)
;Make a contour plot of the latitudes
c=contour(a.getsuffixbyname('LATITUDE'))

(many code lines)

;Get the band with wavelength nearest to 2.1 (in the units used in the cube)
selband=a.getbandbywavelength(2.1,wavelengths=selwavs)

(many code lines)

;Get the start time of the cube
print,a.getfromheader('START_TIME')
;"2007-084T10:00:57.286Z" 

Much better than at the beginning having to do:
pp_readcube,'CM_1553510065_1_ir.cub',core=core,wavelengths=wavs,backnames=bna
mes,latitude=latitude,start_time=start_time,lines=lines,samples=samples,...



  

Objects – why bother?
3 – Operator/method overloading:

IDL> l1=list(4,9,16,25)

IDL> l2=list(36,49)

IDL> l3=l1+l2

IDL> help,l3
L3              LIST  <ID=110  NELEMENTS=6>

IDL> print,l1 eq l2
   0   0

IDL> l=list()

IDL> if (l) then print,'list is true' else print,'list is false'
list is false

IDL> l.add,9

IDL> if (l) then print,'list is true' else print,'list is false'
list is true



  

Objects – why bother?
4 – Data are kept valid.

In structures, the user can change the values in any field, to anything.

Often, a structure's fields should be kept consistent among them. There is no way to enforce 
this with structures.

Ex: a structure containing a data cube, with:

IDL> cube={nlines:100, ncolumns:200, nbands:300, data:ptr_new()}
IDL> cube.data=ptr_new(dblarr(cube.ncolumns,cube.nlines,cube.nbands))

So far, so good. However,
IDL> cube.nlines=-5

IDL> cube.data=ptr_new(dblarr(12,78,47))

IDL> help,cube
** Structure <b9591678>, 4 tags, length=12, data length=10, refs=1:
   NLINES          INT             -5
   NCOLUMNS        INT            200
   NBANDS          INT            300
   DATA            POINTER   <PtrHeapVar2>

IDL> help,*cube.data
<PtrHeapVar2>   DOUBLE    = Array[12, 78, 47]

Does not make 
sense.

Not consistent



  

Objects – why bother?
Objects can enforce that only valid data are used, and that all internal data are kept valid 
and consistent.

IDL> cube=pp_editablecube(file='CM_1503394149_1_ir_eg.cub')

IDL> print,cube.lines,cube.samples,cube.bands
          64          64         256

IDL> help,cube.core
<Expression>    FLOAT     = Array[64, 64, 256]

IDL> cube.core=dblarr(100,100,256)

This was not an assignment: it is a method call, equivalent to:

cube.setproperty,core=dblarr(100,100,256)

The result:

IDL> help,cube.core
<Expression>    DOUBLE    = Array[100, 100, 256]

IDL> print,cube.lines,cube.samples,cube.bands
         100         100         256



  

Objects in IDL 8.4

In IDL 8.4, all variable types (except object and structure) were promoted to 
object. They come with many useful methods and attributes:

IDL> x=[1,9,1,3,9,9,5,3,12]
IDL> x.uniq()
       1       3       5       9      12
IDL> x.max()
      12
IDL> x.length
           9
IDL> x.TYPENAME
INT
IDL> a='some string'
IDL> a.capwords()
Some String
IDL> a.replace('string','bananas')
some bananas
IDL> a.contains('some')
   1



  

What is wrong with this? 

function stefanboltzmann,j
  sigma=5.670400e-8 ;Js^-1m^-2K^-4
  return, (j/sigma)^(1/4)
end

print, stefanboltzmann(6.3200984e7)
end
?

Number representations - consequences



  

Number representations - consequences

What is wrong with this?

function stefanboltzmann,j
  sigma=5.670400e-8 ;Js^-1m^-2K^-4
  return, (j/sigma)^(1/4)
end

print, stefanboltzmann(6.3200984e7)
end
      1.00000



  

Number representations - consequences

What is wrong with this?

function comparecolors,color1,color2
  return,max(abs(color1-color2))
end

print,comparecolors([200B,190B,0B],[198B,190B,0B])
print,comparecolors([200B,190B,0B],[201B,190B,0B])
end
?
?



  

Number representations - consequences

What is wrong with this?

function comparecolors,color1,color2
  return,max(abs(color1-color2))
end

print,comparecolors([200B,190B,0B],[198B,190B,0B])
print,comparecolors([200B,190B,0B],[201B,190B,0B])
end
   2
 255



  

Real questions, from the IDL newsgroup
1)
This may be a stupid question, but I really want to know why.
Please, see below and explain. Thanks.
IDL> print, 132*30
    3960
IDL> print, 132*30*10
  -25936

2)
There's something I can not explain to myself, so maybe someone can enlighten me?
IDL> print, fix(4.70*100)
        469

To try and find where the problem is, we tried the following lines:
  IDL> a = DOUBLE(42766.080001)
  IDL> print,a,FORMAT='(F24.17)'
      42766.07812500000000000
As you see, the number we get out isn't the same as the number we entered.

3)
I have a problem related to float-point accuracy
If I type in: 50d - 1d-9, I get 50.000000
And here lies my problem, I'm doing a numerical simulation where such an arithmetic is 
common place, and as a result i get a lot or errors. I know for example, that if i simply type
print, 50d - 1d-9, format = '(f.20.10)' , i'll get:
49.9999999990
But how can I convince IDL to do it on its own during computations? 



  

Real questions, from the IDL newsgroup

4)
Hi guys,
IDL> print,((10^5)/(exp(10)*factorial(5)))
The actual result of the above line is 0.0378332748
But when we run it in IDL we get the result as -0.011755556

5)
I ran into a number transformation error yesterday that is still confusing me this morning. The 
problem is that the number 443496.984 is being turned into the number 443496.969 from basic 
assignments using Float() or Double(), despite the fact that even floats should easily be able to 
handle a number this large (floats can handle "±10^38, with approximately six or seven decimal 
places of significance"). 



  

Some References

Help! The sky is falling!
http://www.dfanning.com/math_tips/sky_is_falling.html

What every programmer should know about floating-point arithmetic
or
Why don't my numbers add up?
http://floating-point-gui.de/

What every computer scientist should know about floating-point arithmetic
http://docs.sun.com/source/806-3568/ncg_goldberg.html

http://www.xkcd.org/217

http://www.dfanning.com/math_tips/sky_is_falling.html
http://floating-point-gui.de/
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.xkcd.org/217

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

