

Introduction to IDL

3 – Data structures and strings

Paulo Penteado
pp.penteado@gmail.com
http://www.ppenteado.net

(http://xkcd.com/163)

mailto:pp.penteado@gmail.com
http://www.ppenteado.net/
http://xkcd.com/163

Containers

A single value in a variable is not enough.

Containers – variables that hold several values (the elements)

There are many ways to organize the elements: arrays are just one of them
● Each way is implementing some data structure*.

There is no “best container”:

● Each is best suited to different problems

The 3 main properties of containers:

● Homogeneous X heterogeneous: whether all elements are the same type.

● Static X dynamic: whether the number of elements is fixed.

● Sequentiality:
➔ Sequential containers: elements stored by order, and are accessed by indices.
➔ Non-sequential containers: elements stored by name or through relationships.

*A data structure is a way of organizing data; a structure is just one of them.

The most common types (names vary among languages; some have several implementations
for the same type)*:

● Array / vector / matrix (1D or MD): C, C++, Fortran, IDL, Java, Python+Numpy, R

● List: C++, Python, IDL (≥8), Java, R, Perl**

● Map / hash / hashtable / associative array / dictionary: C++, Python, IDL (≥8), Java,
R***, Perl

● Set: C++, Python, Java, R

● Tree / heap: C++, Python, Java

● Stack: C++, Python, Java

● Queue: C++, Python, Java

*Listed only when the structure is part of a language's standard library.

**A Perl array is more like a list than an array.

***Which in R are also called named lists.

Containers

Arrays - definition

The simplest container.

A sequential set o elements, organized regularly, in 1D or more (MD).

Not natively present in some recent languages (Perl, Python without Numpy).

Sometimes called array only when more than 1D, being called vector in the 1D case.

Arrays - characteristics

Homogeneous (all elements must be the same type)

Static (cannot change the number of elements)
● “Dynamic arrays” are actually creating new arrays, and throwing away the old ones on

resize (which is inefficient).

Sequential (elements stored by an order)

Organized in 1D or more (MD).

Element access through their indices (sequential integer numbers).

Usually, the most efficient container for random and sequential access.

Provide the means to do vectorization (do operations on the whole array, or parts of
the array, with a single statement).

● 1D arrays are common.
● MD arrays are often awkward (2D may not be so bad): IDL and Python+Numpy have

high level MD operations.

Internally all elements are stored as a 1D array, even when there are more dimensions
(memory and files are 1D).

● They are always regular (each dimension has a constant number of elements).

Arrays

1D

 a[0] a[1] a[2] a[3] a[4] a[5]

Ex.:

IDL> a=bindgen(6)+1

IDL> help,a
A INT = Array[6]

IDL> print,a
 1 2 3 4 5 6

In IDL, indexes start at 0 (other languages may start at 1 or at arbitrary numbers)

1 2 3 4 5 6

Generates an array of type byte, with 6
elements, valued 1 to 6.

Arrays

2D

a[0,0] a[1,0] a[2,0]

a[1,0] a[1,1] a[2,1]

Ex.:

IDL> a=bindgen(3,2)+1

IDL> help,a
A INT = Array[3, 2]

IDL> print,a
 1 2 3
 4 5 6

Must be regular: cannot be like

1 2 3

4 5 6

11 12 13 14 15 16 17 18 19

7 8 9 10

1 2 3 4 5 6

Generates an array of type byte, with 6
elements, in 3 columns by 2 rows, valued 1 to 6.

Arrays

3D is usually thought, graphically, as pile of “pages”, each page being a 2D table. Or as a
brick. Ex:

IDL> a=bindgen(4,3,3)

IDL> help,a
A BYTE = Array[4, 3, 3]

IDL> print,a
 0 1 2 3
 4 5 6 7
 8 9 10 11

 12 13 14 15
 16 17 18 19
 20 21 22 23

 24 25 26 27
 28 29 30 31
 32 33 34 35

Beyond 3D, graphical representations get awkward (sets of 3D arrays for 4D, sets of 4D for
5D, etc.)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

Generates an array of type byte, with 36
elements, over 4 columns, 3 rows, 3 “pages”,
valued 0 to 35.

Arrays – MD storage
Internally, they are always 1D

The dimensions are scanned sequentially. Ex (2D): a[2,3] - 6 elements:

1)
a[0,0] a[1,0] a[2,0] a[0,1] a[1,1] a[2,1]

Memory position:
0 1 2 3 4 5

or

2)
a[0,0] a[0,1] a[1,0] a[1,1] a[2,0] a[2,1]

Memory position:
0 1 2 3 4 5

Each language has its choice of dimension order:

Column major – first dimension is contiguous (1 above): IDL, Fortran, R, Python+Numpy
Row major – last dimension is contiguous (2 above): C, C++, Java, Python+Numpy

Note that languages / people may differ in the use of the terms row and column.

Graphically, usually the “horizontal” dimension (shown over a line) can be either the first of the
last. Usually the horizontal dimension is the contiguous.

1 2

3 4

5 6

1 2

3 4

5 6

Arrays – basic usage

Access to individual elements, through the M indices (MD), or single index (MD or 1D). Ex:

IDL> a=dindgen(4)
IDL> b=dindgen(2,3)
IDL> help,a
A DOUBLE = Array[4]
IDL> help,b
B DOUBLE = Array[2, 3]
IDL> print,a
 0.0000000 1.0000000 2.0000000 3.0000000
IDL> print,b
 0.0000000 1.0000000
 2.0000000 3.0000000
 4.0000000 5.0000000
IDL> print,a[2]
 2.0000000
IDL> print,a[-1]
 3.0000000
IDL> print,a[-2]
 2.0000000
IDL> print,a[n_elements(a)-2]
 2.0000000
IDL> print,b[1,2]
 5.0000000
IDL> print,array_indices(b,5)
 1 2
IDL> print,b[5]
 5.0000000

Negative indices are counted from the end (IDL≥8): -1 is
the last element, -2 the one before the last, etc.

Return arrays of doubles where each element has
the value of its index.

Elements in MD arrays can also be
accessed through their 1D index.

Accessing slices: regular subsets, 1D or MD, contiguous or not. Ex:

IDL> b=bindgen(4,5)
IDL> print,b
 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15
 16 17 18 19
IDL> c=b[1:2,2:4]
IDL> help,c
C BYTE = Array[2, 3]
IDL> print,c
 9 10
 13 14
 17 18
IDL> print,b[*,0:2]
 0 1 2 3
 4 5 6 7
 8 9 10 11
IDL> print,b[1:2,0:-1:2]
 1 2
 9 10
 17 18
IDL> print,b[1,2:0:-1]
 9
 5
 1

Elements from columns 1 to 2, from lines 2 to 4

All columns, lines 0 to 2

Columns 1 to 2, lines 0 to last (-1), every second
line (stride 2)

Stride can be negative, to take elements in
reverse order.

Arrays – basic usage

Arrays – should I care whether they are row/column major?

For most light, simple use, it does not matter.

When does it matter?

1) Vector operations: to select contiguous elements, to use single index for MD arrays.

2) Mixed language / data sources:

● When calling a function from another language, accessing files / network connections
between different languages.

3) Efficiency:

If an array has to be scanned, it is more efficient (specially in disk) to do it in the same order
used internally.
Ex: to run through all the elements of this column major array:

In the same order used internally:

for j=0,2 do begin
 for i=0,1 do begin
 k=i+j*2
 print,i,j,k,a[i,j]
 do_some_stuff,a[i,j]
 endfor
endfor

No going back and forth (shown by variable k).

a[0,0] (a[0]) : 1 a[1,0] (a[1]) : 2

a[0,1] (a[2]) : 3 a[1,1] (a[3]) : 4

a[0,2] (a[4]) : 5 a[1,2] (a[5]) : 6

i j k a[i,j]
 0 0 0 1
 1 0 1 2
 0 1 2 3
 1 1 3 4
 0 2 4 5
 1 2 5 6

Arrays – should I care whether they are row/column major?

Reading out of order:

for i=0,1 do begin
 for j=0,2 do begin
 k=i+j*2
 print,i,j,k,a[i,j]
 do_some_stuff,a[i,j]
 endfor
endfor

Lots of going back and forth:

i j k a[i,j]
 0 0 0 1
 0 1 2 3
 0 2 4 5
 1 0 1 2
 1 1 3 4
 1 2 5 6

Arrays – should I care whether they are row/column major?

The original code read through
disk out of order, taking ~1h to
run (black line).

When reading in order (red line),
the code ran in ~3 min.

One real life example

Arrays – should I care whether they are row/column major?

How to make an “irregular array”

If an array stores pointers, each element can point to anything, regardless of what the
other elements point to:

IDL> arr[1]=ptr_new('banana')
IDL> arr=ptrarr(3)
IDL> arr[0]=ptr_new([1,2,3])
IDL> arr[1]=ptr_new([90,21])
IDL> arr[2]=ptr_new([18,49,37,84,93])
IDL> for i=0,2 do print,i,':',*arr[i]
 0: 1 2 3
 1: 90 21
 2: 18 49 37 84
93
IDL> arr[1]=ptr_new('banana')
IDL> for i=0,2 do print,i,':',*arr[i]
 0: 1 2 3
 1:banana
 2: 18 49 37 84
93

Lists - definition
Elements stored sequentially, accessed by their indices

● Similar to 1D arrays.

Unlike arrays, lists are dynamic, and, in IDL, heterogeneous.
Ex:

IDL> l=list()
IDL> l.add,2
IDL> l.add,[5.9d0,7d0,12d0]
IDL> l.add,['one','two']
IDL> help,l
L LIST <ID=1 NELEMENTS=3>
IDL> print,l
 2
 5.9000000 7.0000000 12.000000
one two
IDL> l.remove,1
IDL> print,l
 2
one two
IDL> l.add,bindgen(3),1
IDL> print,l
 2
 0 1 2
one two

Creates an empty list

Elements added to the list

Removes element from position 1.
If position unspecified, the last element is
removed.

Add element to position 1. When position is
unspecified, added to the end of the list.

Lists - characteristics

Efficient to add / remove elements, from any place in the list.

● Usually elements are added / removed to the end by default.

Most appropriate when

● The number of elements to be stored is not known in advance.

● The types / dimensions of the elements are not known in advance.

● When there will be many adds / removals of elements.

Easy storage of “non-regular” arrays.

Applications where each element in the list contains a different number of elements:

● Elements of
➔ Asteroid families
➔ Star / galaxy clusters
➔ Planetary / stellar systems

● Neighbors of objects (from clustering / classification algorithms)
➔ Observations / model results
➔ Different number of observations for each object
➔ Different number of sources found on each observation
➔ Different number of objects used in each model

● Non regular grids
➔ Model parameters (models are calculated for different values of each parameter)
➔ Grids with non-regular spacing
➔ Models with different numbers of objects / species

Lists – application examples

Easy storage of “non-regular” arrays. Exs:

IDL> l=list()
IDL> l.add,[1.0d0,9.1d0,-5.2d0]
IDL> l.add,[2.5d0]
IDL> l.add,[-9.8d0,3d2,54d1,7.8d-3]
IDL> print,l
 1.0000000 9.1000000 -5.2000000
 2.5000000
 -9.8000000 300.00000 540.00000 0.0078000000
IDL> a=l[2]
IDL> print,a
 -9.8000000 300.00000 540.00000 0.0078000000

Lists – application examples

Hashes / Dictionaries - characteristics
Similar to structures: store values by names (keys).

Unlike structures, keys can be any data type (most often used: strings, integers, reals).

Unlike indices (arrays and lists), keys are not sequential.

Unlike structures, dictionaries are dynamic: elements can be freely and efficiently added /
removed.

● Dictionaries are to structures as lists are to 1D arrays.

May be heterogeneous – both keys and values can have different types / dimensions.

Elements may not be stored in order:
● The order the keys are listed may not be the same order in which they were put into the

dictionary.

Find out whether a key is present, and retrieve the value from a key are operations that take
constant time: It does not matter (usually) whether the dictionary has 10 or 1 million elements.

Hashes / Dictionaries - characteristics
Similar to structures: store values by names (keys).

Unlike structures, keys can be any data type (most often used: strings, integers, reals).

Unlike indices (arrays and lists), keys are not sequential.

Unlike structures, dictionaries are dynamic: elements can be freely and efficiently added /
removed.

● Dictionaries are to structures as lists are to 1D arrays.

May be heterogeneous – both keys and values can have different types / dimensions.

Elements may not be stored in order:
● The order the keys are listed may not be the same order in which they were put into the

dictionary.

Find out whether a key is present, and retrieve the value from a key are operations that take
constant time: It does not matter (usually) whether the dictionary has 10 or 1 million elements.

● Key/value lookup does not involve searches.
● Like a paper dictionary, a paper phone book, or the index in a paper book.

In IDL 8.0 to 8.2.3, there is only one type: hash.

IDL 8.3 also has orderedhash and dictionary.

IDL> h=hash()
IDL> h['one']=[9.0,5.8]
IDL> h[18.7]=-45
IDL> h[10]=bindgen(3,2)
IDL> help,h
H HASH <ID=1 NELEMENTS=3>
IDL> print,h
10: 0 1 2 ...
one: 9.00000 5.80000
18.7000: -45
IDL> print,h[10]
 0 1 2
 3 4 5
IDL> print,h.keys()
 10
one
 18.7000
IDL> print,h.values()
 0 1 2 3 4 5
 9.00000 5.80000
 -45
IDL> print,h.haskey('two')
 0
IDL> h.remove,'one'
IDL> print,h.haskey('one')
 0

Hashes – basic use:
Creates an empty
dictionary (hash)

Add values to it

Storing elements by a useful name, to avoid keep searching for the element of interest. Ex:
Storing several spectra, by the target name:

spectra=hash()
foreach el, files do begin
 read_spectrum,el,spectrum_data
 spectra[spectrum_data.target]=spectrum_data
endforeach

Which would be convenient to use:

IDL> help,h
H HASH <ID=1 NELEMENTS=3>

IDL> print,h
HR21948: { HR21948 5428.1000 5428.1390 5428.1780 5428.2170 ...
HR5438: { HR5438 5428.0000 5428.0390 5428.0780 5428.1170 ...
HD205937: { HD205937 5428.1000 5428.1390 5428.1780 5428.2170 ...

IDL> help,h['HR5438']
** Structure <90013e58>, 7 tags, length=4213008, data length=4213008, refs=6:
 TARGET STRING 'HR5438'
 WAVELENGTH DOUBLE Array[1024]
 FLUX DOUBLE Array[1024]
 DATE STRING '20100324'
 FILE STRING 'spm_0049.fits'
 DATA DOUBLE Array[512, 1024]
 HEADER STRING Array[142]

Hashes - examples

A lot of freedom in key choice:

● Strings are arbitrary, without the character limitations in structure fields (which cannot
have whitespace or special symbols): -+*/\()[]{} ,”'.

● Special characters commonly appear in useful keys:
➔ File names (some-file.fits)
➔ Object names (alpha centauri, 433 Eros, 2011 MD)
➔ Catalog identifier (PNG 004.9+04.9)
➔ Object classification ([WC6],R*), etc.

● Non-strings are often useful:
➔ Doubles – Julian date, wavelength, coordinates, etc.
➔ Non consecutive integers, not starting at 0: Julian day, catalog number, index

number, etc.

Hashes - examples

Starting in IDL 8.3:

orderedhash

● Just like a regular hash, but preserver the order of the elements.

dictionary

● Just like a regular hash, but keys must be strings, following the same rules as IDL
variables:
➔ Case-insensitive
➔ No spaces or special characters
● Cannot start with a number

● So that values can be accessed like structure fields:

New types

IDL> d=dictionary()
IDL> d.nobjects=3
IDL> d.temperatures=[18.5,20.98,200.46]
IDL> d
{
 "NOBJECTS": 3,
 "TEMPERATURES": [18.500000, 20.980000, 200.46001]
}
IDL> d.nobjects=4
IDL> d.temperatures=[18.500000, 20.980000, 200.46001,23.6]

Other containers

Structures are usually implemented as types, but are also containers – heterogeneous,
static and non sequential:

** Structure <9019c628>, 6 tags, length=64, data length=58, refs=2:
 ELEMENT STRING 'argon'
 INTENSITY DOUBLE 98.735900
 WIDTH DOUBLE 0.0087539000
 ENERGY DOUBLE 12.983800
 IONIZATION INT 3
 DATABASE STRING 'NIST Catalog 12C'
 WAVELENGTH DOUBLE 6398.9548

Hashes are to structures (both non sequential) as lists are to arrays (both sequential): the
former is the dynamic version of the latter.

Arrays, lists, structures and dictionaries are the 4 basic containers.
● Most others are specializations of these 4.

Container choice – lists x arrays

Lists and arrays store elements ordered by index. They share many uses.

Differences:

● Lists are dynamic, 1D and may be heterogeneous.

● Arrays are static, homogeneous, and may be more than 1D.

Usually,

● Lists are chosen when one needs:
➔ “non regular arrays”
➔ add/remove elements (particularly when the number of elements to store is not known in

advance).
➔ elements that are not scalar, or not of the same type.

● Arrays are more convenient when one needs:
➔ More than 1D
➔ vector operations
➔ make sure that elements are scalar and of the same type

Structures and dictionaries store elements by name. They share many uses.

Main difference:

● Dictionaries are dynamic

● Structures are static

Usually,

● Dictionaries are more convenient when:
➔ The keys / types are not known in advance
➔ The values may have to change type / dimensions
➔ Adding removing fields will be necessary
➔ Keys are not just simple strings

● Structures are more convenient:
➔ To put them into arrays, to do vector operations
➔ To enforce constant type / dimensions of values

Container choice – structures x dictionaries

Vectorization – Why?
The programmer only writes high level operations:

IDL> a=dindgen(4,3,2)
IDL> b=a+randomu(seed,[4,3,2])*10d0
IDL> help,a,b
A DOUBLE = Array[4, 3, 2]
B DOUBLE = Array[4, 3, 2]
IDL> c=a+b
IDL> d=sin(c)
IDL> help,c,d
C DOUBLE = Array[4, 3, 2]
D DOUBLE = Array[4, 3, 2]
IDL> A=dindgen(3,3)
IDL> y=dindgen(3)
IDL> x=A#y ;Matrix product of matrix A (3,3) and vector y (3)
IDL> help,y,A,x
Y DOUBLE = Array[3]
A DOUBLE = Array[3, 3]
X DOUBLE = Array[3]

IDL may even do vector operations in parallel.

1D x MD indexing
In an array with more than 1 dimension (MD), elements can be selected by one index per
dimension:

IDL> a=bindgen(4,3)*2
IDL> print,a
 0 2 4 6
 8 10 12 14
 16 18 20 22
IDL> print,a[1,2]
 18

Or by just one index, which is the order in which that element is stored in the array:

IDL> print,a[9]
 18
IDL> print,array_indices(a,9)
 1 2

MD->1D conversion:

IDL> adims=size(a,/dimensions)
IDL> print,adims
 4 3
IDL> print,a[1+adims[0]*2]
 18

Arrays as indices

Selecting multiple elements with array expressions

● When an array is used as indices to another array, the result has the same dimension as
the index array:

IDL> a=bindgen(4,3)*2
IDL> print,a[[0,1,3,5]]
 0 2 6 10
IDL> print,[[0,1],[3,5]]
 0 1
 3 5
IDL> print,a[[[0,1],[3,5]]]
 0 2
 6 10

● When each dimension receives an index array, these arrays must have the same shape.
The result has this shape, with the elements selected by the corresponding indices

:

IDL> print,a[[0,1],[3,5]]
 16 18

1D array, 2 elements:
0: a[0,3]
1: a[1,5]

1D array, 4 elements: 0,1,3,5 from a

2D index array (of 1D indices), 4 elements

2D array, 4 elements from a, given by the (1D)
indices above.

Mixed shape operations

Vector operations are not limited to arrays of the same shape:

● When a scalar is applied to an array, the result is an array of the same shape with the
scalar applied to each element:

IDL> print,1+[0,3,4]
 1 4 5

➔ If two arrays of different shapes are used: the smaller lenght of each dimension is used;
the remaining elements from the larger array are ignored:

IDL> b=[0,1,2]

IDL> c=[1,2,3,4]

IDL> print,b*c
 0 2 6

IDL> print,c*2
 2 4 6 8

Searching in arrays

Finding an array element by its properties is one of the most common operations. Easy with
IDL's array functions:

●Filters:

w=where((spectrum.wavelength gt 4d3) and (spectrum.wavelength lt 6d3),/null)
spectrum=spectrum[w]

(selects only the elements in spectrum where the field wavelength is between 4d3 and
6d3)

spectrum=spectrum[where(finite(spectrum.flux),/null)]

(selects the elements in spectrum where flux Is not NaN or infinity)

●Specific elements

w=where(observations.objects eq 'HD3728',/null)
p=plot(observations[w].wavelength,observations[w].flux)

If this has to be done often, it may be better to put the elements into a hash, which is
directly indexed by the name:

p=plot((observations['HD3278']).wavelength,(observations['HD3278']).flux)

Searching in arrays

●Elements nearest to some real number:
➔ Usually necessary to find elements in arrays of reals, since there mey not be any elements

with exactly the value being looked for:

halpha=6562.8d0
!null=min(lines.wavelength-halpha,minloc,/absolute)
do_some_stuff,lines[minloc]

●Find a value in a monotonic sequence.
➔ Ex: In a model, change the temperature in the grid cells located at a certain radius

(r_search):

IDL> help,temperature,r,theta,phi,r_search
TEMPERATURE DOUBLE = Array[300, 100, 200]
R DOUBLE = Array[300]
THETA DOUBLE = Array[100]
PHI DOUBLE = Array[200]
R_SEARCH DOUBLE = 74.279000
IDL> print,minmax(r)
 17.485000 100.00000
IDL> w=value_locate(r,r_search)
IDL> print,w,r[w],r[w+1]
 205 74.058829 74.334799
IDL> temperature[w,*,*]=some_other_temperature

Returns the index where r (a
sorted array) surrounds the value
being searched for (r_search).

Index where the minimum
occurs

Searching for the minimum in
absolute value

foreach loops (starting on IDL 8.0)

Operate on each element of an array, list or hash:

IDL> a=[1,4,9]
IDL> foreach element,a,ind do print,ind,element
 0 1
 1 4
 2 9
IDL> h=hash()
IDL> h[1]=95
IDL> h['two']=[4,-9,1]
IDL> h[1.87]='something'
IDL> foreach value,h,key do print,key,':',value
 1.87000:something
 1: 95
two: 4 -9 1

foreach element,a,ind do begin
 print,ind,element
endforeach

Container methods (introduced in IDL 8.4)

Map: apply the same function to every element of the container

http://www.exelisvis.com/docs/IDL_Variable.html
http://www.exelisvis.com/docs/LAMBDA.html

IDL> l=list()
IDL> l.add,[1,3,9]
IDL> l.add,[18,24]
IDL> l.add,!null
IDL> l.add,98
IDL> l
[
 [1, 3, 9],
 [18, 24],
 null,
 98
]
IDL> l.map(lambda(x:n_elements(x)))
[
 3,
 2,
 0,
 1
]

Lambda function: creates
a one-line function right in
the middle of the code.

http://www.exelisvis.com/docs/IDL_Variable.html
http://www.exelisvis.com/docs/LAMBDA.html

Container methods (introduced in IDL 8.4)

http://www.exelisvis.com/docs/IDL_Variable.html

http://www.exelisvis.com/docs/IDL_Number.html

http://www.exelisvis.com/docs/IDL_String.html

IDL> x=[10.0,-20.0,40.0,100.0]
IDL> x.mean()
 32.500000
IDL> x.max()
 100.00000
IDL> x.median()
 40.000000

http://www.exelisvis.com/docs/IDL_Variable.html
http://www.exelisvis.com/docs/IDL_Number.html
http://www.exelisvis.com/docs/IDL_String.html

Strings – definition

A string is a variable representing text, as a sequence (a string) of characters.

Every programming language has at least one standard variable type to represent and
process strings.

It is one of the most often needed types, for everything. Exs:

● Inform the user
● File names
● Identifiers (elements, dates, names, programs, algorithms, objects, properties, etc.)
● File input and output (though not all data files are made with text)
● Building commands1
● Most databases and web applications are string-centric

Among the basic variable types strings are the most complex to process.

Processing strings is not only prints and reads.

Strings - encoding

What makes up a string?

● Computers only “know” numbers (in binary).

● Nothing makes the contents of a variable or file intrinsically text. They are only 0s and 1s.

● The mapping between binary numbers and text is determined by the encoding, just
like integer and real numbers are also encoded into binary digits.

● Most languages assume a specific encoding; some have different types for different
encodings, and some may use string objects that can produce different encodings.

In ancient times (1980s) encoding was always the same: ASCII (American Standard Code for
Information Interchange):

● 1 byte (7 or 8 bits) per character - 28 (256) or 27 (128) different characters.

● A standard table defines which character is encoded by each number in the range 0-127:

String encodings - ASCII

String encodings - ASCII

Not all ASCII characters are visible (printable). Some are whitespace (space, tabs, etc.),
other are some form o control character (null, CR, LF, etc.).

Zero is reserved for control, meaning either an empty string (made of only a zero), or, in
some cases (C), the end of a string.

Characters 128-255 are not in the ASCII standard. The characters vary with the chosen
ASCII extension.

ASCII is the simplest encoding in use:: characters always have the same size in memory
(1 byte), and are easily read, processed and converted to/from numbers.

ASCII still is the most common encoding in scientific programming, but not the only
one.

Line termination varies among systems. The most common choices:
● Unix-like systems (Linux, Max OS X): LF (LineFeed; ASCII 10)
● Windows: CR (Carriage Return; ASCII 13) followed by LF (ASCII 10)
● Mac OS 9 and earlier: CR (ASCII 13)

ASCII does not mean the same as “text file”.

In recent years, Unicode encoding, in its many forms, is becoming more widespread.

String encodings - ASCII

Why not always use ASCII?

It is not enough. It does not contain, for instance:

● Modified characters (diacritical marks, cedilla)

● Math symbols (beyond the very basic + - . * / ^ ! % > < =)
➔ Ex: ∂ ∑ ∫ ± ≥ ≤ × ∞ ≠ℝ ℤ ∀ ∃ ∮ ≌ ∇

● Physical symbols
➔ Ex: Å µ ☉ ⊕

● Greek letters

● Other symbols
➔ Ex: → ↔ € ª ° £ ¥ ¿ ¡⇌ ⇛

● Characters from other languages (including those of many symbols, such as the forms
used for Chinese and Japanese).

String encodings - Unicode

How to overcome the ASCII limitations?

The only widely used standard today is Unicode.

Developed to be “the one code”, with “every” character from “every” language, with metadata
(data describing the characters).

It is not immutable, additions are decided by the Unicode Consortium (
http://www.unicode.org/).

http://www.unicode.org/

The Unicode catalog has data about the characters, which are used in queries and to identify
them, including names and properties: printable, numeric, alphanumeric, capital, blank,
language, math, etc.

Exs:
Unicode Character 'LATIN CAPITAL LETTER A' (U+0041)
Name LATIN CAPITAL LETTER A
Block Basic Latin
Category Letter, Uppercase [Lu]
Combine 0
BIDI Left-to-Right [L]
Mirror N
Index entries Latin Uppercase Alphabet, Uppercase Alphabet, Latin

Capital Letters, Latin
Lower case U+0061
Version Unicode 1.1.0 (June, 1993)

Unicode Character 'INTEGRAL' (U+222B)
Name INTEGRAL
Block Mathematical Operators
Category Symbol, Math [Sm]
Combine 0
BIDI Other Neutrals [ON]
Mirror Y
Index entries Integral Signs, INTEGRAL
See Also latin small letter esh U+0283
Version Unicode 1.1.0 (June, 1993)

(results from http://www.fileformat.info/info/unicode/char/search.htm)

∫

A

String encodings - Unicode

http://www.fileformat.info/info/unicode/char/search.htm

IDL> maçã=1

maçã=1
 ^
% Syntax error.
IDL> some_string='maçã'
IDL> print,some_string
maçã
IDL> iplot,/test,title='Temperature (°C)'

Strings – Unicode support

Languages vary widely

● Do not know Unicode (on;y use ASCII): C, Fortran

● Use ASCII natively (including for sourcecode), but have some variable types and
libraries to to process Unicode: C, C++, IDL, R:

●

● Use Unicode natively (including in sourcecode), and have extensive Unicode string
support: Java, Python, Perl

Often (even when Unicode can be used in sourcecode), Unicode characters are written
through ASCII with escape codes:

IDL> p=plot(/test,title='!Z(00C5,222B)') produces Å∫

Strings – basic processing

Most common operations

● Concatenation
IDL> a= 'some'
IDL> b=a+' string'
IDL> help,b
B STRING = 'some string'

● Sorting

IDL> help,a,b
A STRING = 'some'
B STRING = 'some string'
IDL> print,b gt a
 1
IDL> c=[a,b,'9','Some',' some','some other string']
IDL> print,c[sort(c)],format='(A)'
 some
9
Some
some
some other string
some string

● Logical value:

Empty string (null string) is false, the rest is true:

IDL> c=''

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is null string ('')

IDL> c='a'

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is not empty string

Whitespace is not the same as empty string:

IDL> c=' '

IDL> if c then print,'c is not empty string' else print,"c is null
string ('')"
c is not empty string

Strings – basic processing

● Substrings

IDL> print,strmid('abcdefg',3,2)
de

In IDL 8.4:

IDL> a='abcdefg'
IDL> a.substring(2,5)
cdef

● Search for characters or substrings

IDL> print,strpos('abcdefg','de')
 3
IDL> a='abcdefg'
IDL> a.indexof('d')
 3

Strings – basic processing

(IDL 8.4)

● Others

IDL> print,strlen('1234567')
 7

IDL> print,strlen(' 1234567 ')
 9

IDL> help,strtrim(' 1234567 ',2)
<Expression> STRING = '1234567'

IDL> print,strupcase('abcdEF')
ABCDEF

IDL> print,strjoin(['a','b','c'],'~')
a~b~c

IDL> a='some random text'
IDL> a.replace('random','specific')
some specific text

IDL> print,strsplit('temperature=19.8/K','=/',/extract),format='(A)'
temperature
19.8
K

Measuring string length includes
whitespace.

Strings – basic processing

(IDL 8.4)

Strings – creation from other types

Every time you see a number, it was converted to a string. Exs (DL):

IDL> print,[-1,0,9]
 -1 0 9

IDL> print,1d0,1B,1.0
 1.0000000 1 1.00000

IDL> help,string(1d0,1B,1.0)
<Expression> STRING = ' 1.0000000 1 1.00000'

IDL> printf,unit,dblarr(3,4,3)

Strings

Puts variables in a file, as strings

Strings – explicit formatting

Often, the default way a string is created from a variable is not adequate (number of digits,
use of scientific notation, spacing, etc.)

In such cases, one must specify how to create the string (by a format).

Each language has its way to specify a format, but there are two common standards: C-like
and Fortran-like. IDL understands both types.

Fortran style

IDL> print,1d0+1d-9
 1.0000000

IDL> print,1d0+1d-9,format='(E16.10)'
1.0000000010E+00

IDL> print,'x=',1d0+1d-9,format='(A0,F16.13)'
X= 1.0000000010000

C (“printf”) style

IDL> print,format='(%"x=%16.10e")',1d0+1d-9
x=1.0000000010e+00

No explicit format (default)

Strings – explicit formatting

Strings - Fortran-style formatting

(just the main specifiers)

IDL> print,'x=',1d0+1d-9,format='(A0,F16.13)'
X= 1.0000000010000

There are modifiers for signs, exponents, leading zeros, line feed, etc.

Code Meaning Example(s)

A String '(A)', '(A10)'

I Integer (decimal) '(I)', '(I10)','(-I2)'

B Integer (binary) '(B)', '(B0)'

Z Integer (hexadecimal) '(Z)', '(Z10)'

O Integer (octal) '(O)', '(O10)'

F Real (fixed point) '(F)','(F5.2)'

E, D Real (floating point) '(E)','(D16.10)'

G Real (fixed or floating, depending on value) '(G)','(G10)'

“” String literal '(“x=”,I10)'

X blanks '(A,10X,I)'

Strings – C-style formatting (printf)
(just the main specifiers)
String with fields to be replaced by values, marked by codes with %

IDL> print,format='(%"x=%16.10e")',1.98549d-8
x=1.9854900000e-08

There are modifiers for signs, exponents, leading zeros, line feed, etc.

Code Meaning Eample(s)

d,i Integer, decimal (int) %d, %5d, %+05d

u Integer, unsigned (unsigned int) %u, %7u

f,F Real, fixed-point (double, float) %f, %13.6f

e,E Real, floating point (double, float) %e, %16.10e

g,G Real, either fixed or floating point, depending on value (double,
float)

%g, %7.3G

x,X Integer, unsigned, hexadecimal (unsigned int) %x, %10X

o Integer, unsigned, octal (unsigned int) %o, %5o

s String (string) %s, %10s

c Character (char) %c

p Pointer – C-style - (void *) %p

% Literal % %%

Strings – implicit conversion to other types

IDL> help,fix(['17',' 17 ','17.1',' -17 ','9 8'])
<Expression> INT = Array[5]

IDL> print,fix(['17',' 17 ','17.1',' -17 ','9 8'])
 17 17 17 -17 9

IDL> print,double(['17',' 17 ','17.1',' -17 ','9 8'])
 17.000000 17.000000 17.100000 -17.000000
 9.0000000

IDL> readf,unit,a,b,c,d

IDL> a=0d0
IDL> b=0.0
IDL> c=0
IDL> reads,'17.1d0 18.9d0 -9',a,b,c
IDL> help,a,b,c
A DOUBLE = 17.100000
B FLOAT = 18.9000
C INT = -9

Converts the string into the types of the variables
a,b,c,d

When default conversion is not enough, a format can be specified

IDL> a=0d0
IDL> b=0.0
IDL> c=0
IDL> reads,'17.1d0 something 18.9d0,-9',a,b,c
% READS: Input conversion error. Unit: 0, File: <stdin>
% Error occurred at: $MAIN$
% Execution halted at: $MAIN$

It did not work, because alone it does not know what to do with the “something”. Using a
format:

IDL> reads,'17.1d0 something 18.9d0,-9',
a,b,c,format='(D6.1,11X,D6.1,1X,I)'

IDL> help,a,b,c
A DOUBLE = 17.100000
B FLOAT = 18.9000
C INT = -9

The format instructed IDL to read a double (D6.1), skip 11 characters (11X), read a double
(D6.1), skip one character (1X), and read an integer (I).

Variables have to be created, to determine the
types for the conversion

Strings – conversion to other types

Strings – other examples

● Simple tests:

IDL> str=['a.fits','a.FITS','a.fitsa','ab.fits','abc.fits']

IDL> print,strmatch(str,'*.fits')
 1 0 0 1 1

IDL> print,strmatch(str,'*.fits',/fold_case)
 1 1 0 1 1

IDL> print,strmatch(str,'*.fits*',/fold_case)
 1 1 1 1 1

IDL> print,strmatch(str,'?.fits')
 1 0 0 0 0

IDL> print,strmatch(str,'??.fits')
 0 0 0 1 0

Strings methods (introduced in IDL 8.4)

http://www.exelisvis.com/docs/IDL_String.html

IDL> a='some string'
IDL> a.capwords()
Some String
IDL> a.replace('string','bananas')
some bananas
IDL> a.contains('some')
 1

http://www.exelisvis.com/docs/IDL_String.html

Regular expressions - definition

Regular expressions, (regex, regexp) are the most powerful tool to specify properties of
strings.

Regex are a language, implemented similarly on most programming languages.

What are they for?

The interpreter (regular expression engine) gets the string and the expression, and
determines whether the string match that expression.

In some cases, the interpreter can also inform which parts of the string match which part of the
regex, and extract these parts.

Regular expressions – use cases
● Separate parts of strings

➔ Find lines with names, values and comments, and extract these pieces:

Scalar with a comment (as in a FITS file):

'SLITPA = 351.979 / Slit position angle'

1D array spanning several lines

'BAND_BIN_CENTER = (0.350540,0.358950,0.366290,0.373220,0.379490,
0.387900,1.04598)'

Scalars in different formats:

'Total Mechanical Luminosity: 1.5310E+03'
'resources_used.walltime=00:56:03'

Pieces of names:

'60.63 1.7836E-20 2.456 T FeIX((3Pe)3d(2PE)4p_1Po-3s2_3p6_1Se)'

Dates, separating year, month, day, hour, minute, second:

'DATE-OBS= '2006-12-18 ' / universal date of observation'
'DATE_TIME = 2010-07-19T16:10:32'
'START_TIME = "2006-182T22:51:02.850Z"'

● Separate pieces of strings
➔ Extract pieces of files names, because they mean something about the file contents:

'spec/dec18s0041.fits'
'scam/dec18i0054.fits'
'15_7_mts_hm/pixselh_mr15.sav'
'15_7_mts_hw/pixselh_mr15.sav'
'16_3_mts_hw/pixselb_mr16.sav'
'readmodel5l_-1_0.00010000_1.0000_r05_030_08196_0.100000_0.05000000_10.00.eps'

● Determine whether a string represents a number (integer or real, fixed or floating point).

● Locate identifiers in file contents. Exs:
➔ Catalog identifiers in the middle of the text
➔ Web addresses (http, ftp, etc.)
➔ File names
➔ Form values
➔ Data elements in text

Regular expressions – use cases

Ex: Determine which strings represent a date in the format yyyy-mm-dd:

IDL> strs=['20100201','2010-02-01','2010-2-1','aaaa-mm-dd','T2010-02-01J']
IDL> print,stregex(strs,'[0-9]{4}-[0-9]{2}-[0-9]{2}',/boolean)
 0 1 0 0 1

This regex means:
● 4 repetitions ({4}) of digits (characters in the range [0-9]),
● Followed by (-),
● Followed by 2 repetitions ({2}) of digits ([0-9]),
● Followed by (-),
● Followed by 2 repetitions ({2}) of digits ([0-9]).

A slightly more complex regex could match the 3 date formats above. It could also reject the
last expression (which has extra characters before and after the date).

Regular expressions – simple example

Regular expressions - rules

A regex with “normal”* characters specifies a string with those characters, in that order.

● Ex: 'J' is a regex that matches any string containing J. 'JA' is a regex that only matches
strings containing 'JA'.

● Exs. (IDL):

IDL> strs=['J','JJJJJ','aJA','j','aJa']

IDL> print,stregex(strs,'J',/boolean)
 1 1 1 0 1

IDL> print,stregex(strs,'JA',/boolean)
 0 0 1 0 0

*some characters have special meaning in regular expressions (shown ahead).

These symbols have special meanings. To represent literally that symbol, is must be escaped
with a \:

Symbol Meaning example Match
\ Escape: the following character must be interpreted

literally, not by its special meaning.
'\?' '?, 'a?a'

. Any character 'a.b' 'ajb', 'aab',
'abb', 'jafbc'

+ One or more repetitions of the preceding element. 'a+b' 'ab', 'aab', 'bab',
'baabh'

() Subexpression: groups characters so that several of
them are affected by the modifiers (like parenthesis
in math).

'(ab)+c' 'abc', 'ababc',
'dabababcg'

* Zero or more repetitions of the preceding element. 'a*b' 'ab','b','aab',
'caaabg'

? Zero or one occurrence of the preceding. element 'a?b' 'b', 'ab',
'cabd', 'cbd'

| Alternation: either one of the two elements. 'a|bc' 'ac', 'bc',
'jacd', 'jbcd'

{n} Exactly n repetitions of the preceding element. 'a{2}b' 'aab', 'daaabg'

{n1,n2} From n1 to n2 repetitions of the preceding element. 'a{1,2}b' 'ab', 'aab',
'aaab', 'gaaabbd'

^ Anchor: beginning of string. '^ab' 'ab', 'abb'

$ Anchor: end of string. 'ab$' 'ab','aab'

[] Value set (shown ahead)

Regular expressions – special characters

[] means a set a value, which may be:

● A set of things to match.
➔ Ex: '[abc]' means any of the characters a,b,c: Ex. Matches:
'a','b','c','ab','ha'.

● A set of things not to match
➔ '[^abc]' means anything other than a, b ou c: Ex matches:

 'd', 'jgs', 'gg'.

● Value ranges
➔ '[0-9]' any digit
➔ '[0-9a-zA-Z]' any digit or letter

● Value classes
➔ Special names for some types of values (in IDL, these come delimited by [::]):
➔ ex: '[[:digit:]' means the same as '[0-9]'.

Regular expressions – value sets

Regular expressions – value classes

Class meaning

alnum Alphanumeric characters: 0-9a-zA-Z

alpha Alphabetic chracters: a-zA-Z

cntrl ASCII control characters (not printable, codes 1 to 31 and 127).

digit Digits (decimal): 0-9

graph Printable characters: ASCII 33 to 126 (excl. space).

lower Lower case letters: a-z

print Printable characters “imprimíveis” (visible plus space): ASCII 32 to 126.

punct Punctuation: !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

space Whitespace: space, tab, vertical tab, CR, LF (ASCII 32 and 9-13).

upper Capital letters: A-Z

xdigit Hexadecimal digits: 0-9A-Fa-f

< Beginning of the word (“word”meaning a sequence of non-space characters).

> End of word.

These are just the main classes.

Regular expressions - examples

Determine whether a string represent a number.:

IDL> str=['9','-18',' 8.75','-8.1','.2','-.459','1.3E9','-9.8d7','a18.8d0','3.2f5']

●Integers:

IDL> intexpr='^[-+]?[0-9]+$'

IDL> print,stregex(str,intexpr,/boolean)
 1 1 0 0 0 0 0 0 0 0

●Floating point:

IDL> fpexpr='^[-+]?(([0-9]*\.?[0-9]+)|([0-9]+\.?[0-9]*))([eEdD][-+]?[0-9]+)?$'

IDL> print,stregex(str,fpexpr,/boolean)
 1 1 0 1 1 1 1 1 0 0

Optional
sign

1 or
more
digits

Optional
sign

0 or more digits,
optionally followed by
a period, plus 1 or
more digits

1 or more digits,
optionally followed by
a period, plus 0 or
more digits

or Optional exponent:
letter (e/d), followed by
optional sign, foloowed
by 1 or more digits

Fixed-point number or floating-point number (mantissa and exponent)

Regular expressions can also be used to extract pieces of the string, that matched pieces of
the expression.

Ex: Determine whether a string contains a date, in any of these formats

IDL> dates=['2011-01-31','2011 1 31','2011/01/31','something done on
y2011m1d31 with something']

And extract the dates from the strings

IDL> expr='[0-9]{4}.[0-9]{1,2}.[0-9]{1,2}'

(4 digits)(any separator)(1 to 2 digits)(any separator)(1 to 2 digits)

IDL> print,stregex(dates,expr,/extract),format='(A)'
2011-01-31
2011 1 31
2011/01/31
2011m1d31

Now, how do we extract each piece (year, month, day)? One operation for each part?
● Could be, much a regex does it all.

Regular expressions - extraction

● In this case, to make for a smaller regex, we assume a simple format: (yyyy-mm-
ddThh:mm:ss.fff).

IDL> str='Stuff observed on 2011-01-31T12:39:24.983 with some instrument'
IDL> expr='([0-9]{4})-([0-9]{2})-([0-9]{2})T([0-9]{2}):([0-9]{2}):([0-9]{2}\.[0-9]{3})'

 (4 digits) - (2 digits) - (2 digits) T (2 digits) : (2 digits): (2 digits.3 digits)

IDL> pieces=stregex(str,expr,/extract,/subexpr)
IDL> print,pieces,format='(A)'
2011-01-31T12:39:24.983
2011
01
31
12
39
24.983
IDL>
d=julday(pieces[2],pieces[3],pieces[1],pieces[4],pieces[5],pieces[6])
IDL> print,d,format='(F16.6)'
 2455593.027372

Whole match
First subexpr
Second subexpr
Third subexpr
Fourth subexpr
Fifth subexpr
Sixth subexpr

Regular expressions - extraction

Some references

References:

The IDL Way, by David Fanning
http://www.idlcoyote.com/idl_way/idl_way.php

● Including "My IDL Program Speed Improved by a Factor of 8100!!!"
http://www.idlcoyote.com/code_tips/slowloops.html

Characters vs. bytes
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF

The absolute minimum every software developer absolutely, positively must know about
Unicode and character sets (no excuses!)
http://www.joelonsoftware.com/articles/Unicode.html

Unicode character search
http://www.fileformat.info/info/unicode/char/search.htm

Software Carpentry Videos on Regular Expressions:
http://software-carpentry.org/4_0/regexp/

This presentation is at
http://www.ppenteado.net/idl/intro

http://www.idlcoyote.com/idl_way/idl_way.php
http://www.idlcoyote.com/code_tips/slowloops.html
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://www.joelonsoftware.com/articles/Unicode.html
http://www.fileformat.info/info/unicode/char/search.htm
http://software-carpentry.org/4_0/regexp/
http://www.ppenteado.net/idl/intro

Some references http://xkcd.com/208/

http://xkcd.com/208/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

