

Introduction to IDL

4 – Files

Paulo Penteado
pp.penteado@gmail.com
http://www.ppenteado.net

mailto:pp.penteado@gmail.com
http://www.ppenteado.net/

Files

Nearly every complex program needs to store data in files.

May be small text files with a few parameters, or huge data files.

Despite common practice, text files are not always the best choice to store data.

There is no “the best format”. Each has advantages and disadvantages.

Often you have no choice – the files are given to you.

Files - text X binary

In any format, files are stored as a sequence of binary digits.

But there are two main ways to code them:

● Text files

➔ Data are transformed into characters, using some formatting (even if implicit), and
written with some text encoding (often, but not necessarily, ASCII).

➔ A text file is nothing more than strings. The same string conversions must be made
as when printing to the screen.

● “Binary” files

➔ Even though every file is binary, this name is used for those where the data are not
written as strings.

➔ Often (not always) the data are stored identically as they would be stored in memory.

Many formats have a mix of text and binary data:

● A text header, which provides information (metadata) about the data stored in the binary
part, which follows.

● The header has, most importantly, information used to know how to read the binary data.

Files - text X binary

Text file advantages:

● Human readable.

● May be self-sufficient: all that is needed to understand the file is contained in it.

● Are the least language / software dependent: usually written in ASCII or Unicode; Every
language always has some support for reading and writing text.

● There are some standard text formats (CSV, XML), which are supported in many
different languages.

Files - text X binary

Advantages of binary files:

● Usually there are no conversions between memory and file data encoding. Thus storage
is more efficient and there are no changes in data values between memory and files.

● Most standard format are binary. Exs: FITS, CDF, NetCDF, HDF, HDF5, JPEG,
JPEG2000, TIFF, GeoTIFF, MPEG, GIF, PNG, ISIS Cube, etc.

● Easier to find ready made libraries (even high level ones) for querying, reading and
writing.

● The best formats are selfdocumented (with text or binary data): The user does not need
to provide any prior knowledge about how the data are stored.

● Every language / platform has itw own native binary format, which may be the easiest to
use.
➔ High level languages have sophisticated native format where everything works

automagically (IDL, R, Python, Java).

● Many formats have the option of compressing the data.

File formats – proprietary x standard

Proprietary format: you make it up to suit your need.

Main advantage: The most convenient encoding might be chose.

Main disadvantage: need to write all the code to read / write the file:

● Usually more work than using a standard format.

● When sharing the file with others, you will have to document how to read it, and they will
have to write code to read it.

● Each new environment where you want to read /write such a file will need new code to
read / write in that format.

If others have already done all the work to develop good standard formats, well
supported on many environments, why reinvent (program, document, test) the wheel?

Some common standard formats used in science

Text:

● CSV: Comma-separated values – well supported in a lot of environments:
➔ Many programming languages.
➔ Spreadsheets (Excel, Calc, Google Docs).
➔ Plotting software.
➔ Web applications to download / upload data.
➔ Databases.
➔ Even Gmail understands it, even in cell phones.

● “Fixed column width”: Not a well-defined standard, but commonly used for tables (2D
arrays).

● XML: Extensible Markup Language – The most flexible text standard, widely used in
general programming, to store anything (even Open Office files are XML).
➔ Well supported (at a low level) by a lot of software.
➔ XML files are often complex – a lot of work to process their data into something useful.

Some common standard formats used in science
Binary:

● FITS: Flexible Image Transport System – The most common format for data and tables
in astronomy. Contains one or more arrays of simple types or structures, plus metadata.

● NetCDF: Network Common Data Form – evolved from CDF, selfdocumented,
commonly supported. Each files stores one or more arrays.

● HDF5: Hierarchical Data Format – selfdocumented, common and well supported,
allowing simple arrays and structures (it is a hierarchical format).

● Image formats: JPEG, JPEG2000, TIFF, GeoTIFF, GIF, PNG, etc. - store 2D/3D arrays
of integers (in some cases, reals), with out without compression (lossy or lossless
compression). JPEG2000has has advanced features, like multiresolution images.

● Vector formats: PS, EPS, DXF, SHP, SVG, PDF – varied levels of complexity to store
drawings, shapes, and other types of data.

● ISIS Cube: similar to FITS files, but only used in remote sensing, Earth sciences and
planetary sciences.

● Native formats: In the high level formats, all the work of organizing and rettrieving the
data (even if there are many, complicated variables) is done automagically. Common in
IDL, R, Python, Java. Each language has its own.

Native IDL files - savefiles

IDL's native format is the savefile.

The most convenient to use from IDL: it takes care of saving / reading several variables,
however complicated they may be.

Disadvantage: outside of IDL, there is almost no support for savefiles (there is a library in
Python).

Native IDL files - savefiles

IDL> x=dindgen(10)
IDL> y=randomu(seed,10)
IDL> a={filename:'some_file.cdf',date:'2014-08-23',$
time:'09:35:23',flux:dblarr(200),wavelengths:dblarr(200)}
IDL> b=replicate(a,27)
IDL> help
A STRUCT = -> <Anonymous> Array[1]
B STRUCT = -> <Anonymous> Array[27]
SEED ULONG = Array[628]
X DOUBLE = Array[10]
Y FLOAT = Array[10]
IDL> save,file='example_savefile.sav',a,b,x,y
IDL> .full
IDL> help
IDL> restore,'example_savefile.sav'
IDL> help
% At $MAIN$
A STRUCT = -> <Anonymous> Array[1]
B STRUCT = -> <Anonymous> Array[27]
X DOUBLE = Array[10]
Y FLOAT = Array[10]

Native IDL files - savefiles

IDL's native format is the savefile.

The most convenient to use from IDL: it takes care of saving / reading several variables,
however complicated they may be.

Disadvantage: outside of IDL, there is almost no support for savefiles (there is a library in
Python).

There are more complicated ways to use savefiles, to read only a few variables (not the whole
file), or change the name of the variables.

● In standard library: IDL_Savefile class
● In Craig Markwadrt's library: cmsave/cmrestore

(http://www.physics.wisc.edu/~craigm/idl/)

http://www.physics.wisc.edu/~craigm/idl/

Text files - newlines

Despite the appearance, text files do not have, intrinsically, multiple lines.
● Text files are just a (1D) sequence of characters, written with some encoding.
● Lines separation (which allows interpreting the file as 2D, with lines and columns) is

specified by conventions.
● There are multiple conventions to specify line ends.

The most primitive convention: No separation: all lines are written iwth a fixed number of
characters, and it is up to the reader to understand that a new line happens every N characters.

● The least portable e most inconvenient convention. (It takes previous knowledge, or some
guessing, to figure out the line width.

● Example (from an actual FITS header):

SIMPLE = T / Fits standard
 BITPIX = 16 / Bits per pixel
 NAXIS = 0 / Number of axes
 EXTEND = T / File may
contain extensions

With the lines wrapped at the right place, it would look like:

SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 0 / Number of axes
EXTEND = T / File may contain extensions

Text files - newlines

The most common way to specify line termination is with a specific marker – the newline code.

It is a special character(s), not normally present in the text, which means a line end.

There are multiple newline standards. The most common:

● LF (Line Feed, ASCII 10) – Unix, Linux, Mac OS X.

● CR - (Carriage Return, ASCII 13) - Mac OS <10.

● CR+LF (CR followed by LF) - Windows, DOS.

This is why Windows' Notepad* does not understand newlines from Linux-style files. The file
only has LF, while the editor expects CR+LF.

Some systems use the literal \n in code to specify a newline, which gets coded according to
the standard in use.

Usually, file reading/writing libraries use the newline native to the system in use. (This is the
case with IDL).

Software to convert among these 2 formats is common (ex: dos2unix).

*Windows' Wordpad does not have this limitation.

Text files - CSV

Comma-separated values

The most best text standard for tables (2D arrays). Often, though not necessarily, written in
ASCII.

Well-supported by languages' standard libraries and other software (Excel, Calc, Origin, Gmail,
Google Docs, web applications, etc.).

Contains
● Header lines (optional): Lines with any text, describing the file,, plus one line for the table

header (the names of the columns).
● One (only one) table, where all lines have the same number of rows:

➔ Columns separated by commas (usually; sometimes, it may be another character).
➔ Lines terminated by newline.
➔ Strings may be delimited by “ “ (so that strings may contain commas).

Ex:

NAME,CALMPOS,FILNAME,ECHLPOS,DISPPOS,TARGNAME,POSDIR,CLASS,MJD-OBS,ITIME,COADDS
"dec18s0001",0,"NIRSPEC-5-AO",62.6300,36.4500,"HD85258","NIRSPEC-5-AO/p1","STAR",54087.6,100.000,1
"dec18s0002",0,"NIRSPEC-5-AO",62.6300,36.4500,"HD85258","NIRSPEC-5-AO/p1","STAR",54087.6,100.000,1
"dec18s0012",0,"NIRSPEC-5-AO",63.5800,36.4500,"itan140","NIRSPEC-5-AO/p2 T","ITAN",54087.6,300.000,1
"dec18s0014",0,"NIRSPEC-5-AO",62.6300,36.4500,"itan140","NIRSPEC-5-AO/p1 T","ITAN",54087.6,300.000,1
"dec18s0015",1,"NIRSPEC-5-AO",62.6300,36.4500,"itan140","NIRSPEC-5-AO/p1","ARC",54087.6,4.00000,1
"dec18s0016",0,"NIRSPEC-5-AO",62.6300,36.4500,"HD85258","NIRSPEC-5-AO/p1","STAR",54087.6,100.000,1

The columns do not need to have the same type, or even be written with the same width.

Header

Text files - CSV
There is ample support to read and write them, with no need to do it yourself at a low level.

May be directly read into Excel, Calc, Origin, Google Docs, Databases, web applications, read
easily read with standard (or common) libraries. Ex:

IDL> c=read_csv('filesearch_scam.csv',header=h)
IDL> print,h
NAME CALMPOS FILNAME ECHLPOS DISPPOS TARGNAME POSDIR CLASS MJD-OBS ITIME COADDS

IDL> help,c
** Structure <c8bca508>, 11 tags, length=5256, data length=5248, refs=1:
 FIELD01 STRING Array[41]
 FIELD02 LONG Array[41]
 FIELD03 STRING Array[41]
 FIELD04 DOUBLE Array[41]
 FIELD05 DOUBLE Array[41]
 FIELD06 STRING Array[41]
 FIELD07 STRING Array[41]
 FIELD08 STRING Array[41]
 FIELD09 STRING Array[41]
 FIELD10 DOUBLE Array[41]
 FIELD11 LONG Array[41]

IDL> print,c.field01[0:3]
dec18s0001 dec18s0002 dec18s0003 dec18s0004

IDL> print,c.field03[0:3]
NIRSPEC-5-AO NIRSPEC-5-AO NIRSPEC-5-AO NIRSPEC-5-AO

Text files - CSV
There is ample support to read and write them, with no need to do it yourself at a low level.

May be directly read into Excel, Calc, Origin, Google Docs, Databases, web applications, read
easily read with standard (or common) libraries. Ex:

But I want my columns to have the name specified in the file! Not things like field01, field02,

One solution (from pp_lib, http://ppenteado.net/idl):

IDL> c=pp_structtransp(read_csv_pp('filesearch_scam.csv'))
IDL> help,c
C STRUCT = -> <Anonymous> Array[41]
IDL> help,c[0]
** Structure <78256968>, 11 tags, length=136, data length=128,
refs=2:
 NAME STRING 'dec18s0001'
 CALMPOS LONG 0
 FILNAME STRING 'NIRSPEC-5-AO'
 ECHLPOS DOUBLE 62.630000
 DISPPOS DOUBLE 36.450000
 TARGNAME STRING 'HD85258'
 POSDIR STRING 'NIRSPEC-5-AO/p1'
 CLASS STRING 'STAR'
 MJD_OBS STRING '54087.6'
 ITIME DOUBLE 100.00000
 COADDS LONG 1

http://ppenteado.net/idl

Text files - CSV
Creating a CSV from arrays:

3 1D arrays (12 elements each), one for each column.:

IDL> x=dindgen(3)
IDL> y=dindgen(4)
IDL> xx=reform(rebin(x,3,4),12)
IDL> yy=reform(rebin(reform(y,1,4),3,4),12)
IDL> f=xx+yy*10
IDL> help,xx,yy,f
XX DOUBLE = Array[12]
YY DOUBLE = Array[12]
F DOUBLE = Array[12]

File writing:

IDL> write_csv,'example.csv',xx,yy,f,header=['X','Y','X+10*Y']

Result:
X,Y,X+10*Y
0.0000000,0.0000000,0.0000000
1.0000000,0.0000000,1.0000000
2.0000000,0.0000000,2.0000000
(...)
0.0000000,1.0000000,10.000000
1.0000000,1.0000000,11.000000

Text files - CSV
Creating a CSV from arrays:

Array of structures: each element (each structure) is one row. Each field is a column:

Result:

NAME,CALMPOS,FILNAME,ECHLPOS,DISPPOS,TARGNAME,POSDIR,CLASS,MJD_OBS,ITIME,COADDS
"dec18s0001",0,"NIRSPEC-5-AO",62.63000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p1","STAR","54087.6",100.0000000000000,1
"dec18s0002",0,"NIRSPEC-5-AO",62.63000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p1","STAR","54087.6",100.0000000000000,1
"dec18s0003",1,"NIRSPEC-5-AO",62.63000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p1","FLAT","54087.6",4.600000000000000,5
"dec18s0004",1,"NIRSPEC-5-AO",62.63000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p1","DARK","54087.6",4.600000000000000,5
"dec18s0005",1,"NIRSPEC-5-AO",62.63000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p1","ARC","54087.6",5.000000000000000,0
"dec18s0006",1,"NIRSPEC-5-AO",63.58000000000000,36.45000000000000,"HD85258","NIRSPEC-
5-AO/p2","FLAT","54087.6",4.600000000000000,5
...

IDL> write_csv_pp,'example1.csv',c,/titles

Text files - “regular columns” / “fixed width”

Not exactly a standard, it is a common practice.

Store a table (2D array) as lines. Each column has a constant width.

May have some header lines, describing the file contents, and/or with the column names.

The rest of the file is the table.

Relatively simple to read, though not as much as csv.

Ex: A simple table with only real numbers. 14 columns x 4 lines.

 wavl CH4=3.3 wavl CH4=2.5 wavl CH4=1.0 wavl CH4=0.8 wavl CH4=0.5 wavl CH4=0.26 wavl CH4=0.2
 477.330000 0.090130 477.330000 0.091110 477.330000 0.089250 477.330000 0.087000 477.330000 0.087140 477.330000 0.090080 477.330000 0.088110
 480.040000 0.090930 480.040000 0.091930 480.040000 0.090160 480.040000 0.087930 480.040000 0.088110 480.040000 0.090950 480.040000 0.089090
 482.750000 0.091710 482.750000 0.092730 482.750000 0.091060 482.750000 0.088850 482.750000 0.089080 482.750000 0.091810 482.750000 0.090060
 485.450000 0.092530 485.450000 0.093570 485.450000 0.092000 485.450000 0.089810 485.450000 0.090100 485.450000 0.092730 485.450000 0.091090

IDL> a=read_ascii('specs_27s_n.txt',data_start=1,header=header)
IDL> print,header
 wavl CH4=3.3 wavl CH4=2.5 wavl CH4=1.0 wavl
CH4=0.8 wavl CH4=0.5 wavl CH4=0.26 wavl CH4=0.2
IDL> help,a
** Structure <d423c9a8>, 1 tags, length=224, data length=224, refs=1:
 FIELD01 FLOAT Array[14, 4]

Text files - “regular columns” / “fixed width”
A more difficult case: Not all columns are the same type.

 NAME CALMPOS FILNAME ECHLPOS DISPPOS TARGNAME POSDIR CLASS MJD-OBS ITIME COADDS
 dec18s0001 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0002 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0003 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 FLAT 54087.57812500 4.60000 5
 dec18s0004 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 DARK 54087.57812500 4.60000 5

This should be read into structures.

IDL offers an interactive way to specify how to read it:
IDL> templ=ascii_template('filesearch_scam.txt')

Field name (default being shown)

Field type (with an automatic guess)

Position (character) of the column start (with
an automatic guess)

Example line, to check the column
separation.

Text files - “regular columns” / “fixed width”
After the template is made, the file can be read with just:

IDL> a=read_ascii('filesearch_scam.txt',template=templ)
IDL> help,a
** Structure <d4ec4608>, 11 tags, length=416, data length=416,
refs=1:
 FIELD01 STRING Array[4]
 FIELD02 LONG Array[4]
 FIELD03 STRING Array[4]
(...)
 FIELD09 FLOAT Array[4]
 FIELD10 FLOAT Array[4]
 FIELD11 LONG Array[4]
IDL> print,a.field01
dec18s0001 dec18s0002 dec18s0003 dec18s0004
IDL> print,a.field04
 62.6300 62.6300 62.6300 62.6300

The template (a structure with data on how to read the file) can be used to read other files in
the same format.

● Instead of being made interactively, could have been read from some file, or created in
the source code.

● Could have specified names for the fields, more useful than things like FIELD11.

Text files - “regular columns” / “fixed width”
An alternative: readcol (from IDL Astro library, http://idlastro.gsfc.nasa.gov/contents.html):

File contents:

 NAME CALMPOS FILNAME ECHLPOS DISPPOS TARGNAME POSDIR CLASS MJD-OBS ITIME COADDS
 dec18s0001 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0002 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0003 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 FLAT 54087.57812500 4.60000 5
 dec18s0004 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 DARK 54087.57812500 4.60000 5

IDL>
readcol,'filesearch_scam.txt',name,calmpos,filname,echlpos,disppos
,targname,posdir,class,mjd_obs,itime,coadds,format='A,I,A,D,D,A,A,
A,D,D,I'
% READCOL: Skipping Line 1
% READCOL: 4 valid lines read
IDL> help
CALMPOS INT = Array[4]
CLASS STRING = Array[4]
COADDS INT = Array[4]
DISPPOS DOUBLE = Array[4]
ECHLPOS DOUBLE = Array[4]
FILNAME STRING = Array[4]
ITIME DOUBLE = Array[4]
MJD_OBS DOUBLE = Array[4]
NAME STRING = Array[4]
POSDIR STRING = Array[4]
TARGNAME STRING = Array[4]

http://idlastro.gsfc.nasa.gov/contents.html

NetCDF, HDF5

Network Common Data Form, Hierarchical Data Format

The only binary standards widely used in science, outside of astronomy (where FITS is king).

Store data as several named variables. Each variable can have metadata:
● Name
● Array dimensions
● Units
● Comments
● Any other attributes (key/value pairs)

Both formats allow for multidimensional arrays.

Only HDF5 allows structures (even complicated structures, not just simple tables).

Selfdocumented: any software that knows these formats can read any file, with no prior
knowledge given by the user.

Well supported, in standard and non-standard libraries, interactive software and data
visualization software (even web browser plugins):

● http://www.unidata.ucar.edu/software/netcdf/
● http://en.wikipedia.org/wiki/Hdf5

NetCDF is simpler to use, because it has no hierarchy. If hierarchy is not needed, NetCDF is
more convenient than HDF5.

http://www.unidata.ucar.edu/software/netcdf/
http://en.wikipedia.org/wiki/Hdf5

NetCDF
There is also the CDL, an ASCII version of NetCDF. NetCDF's standard toolkit has a tool to
convert NetCDF to CDL.

$ ncdump -h refspec_g01_0.nc
netcdf refspec_g01_0 {
dimensions:
 nlay = 51 ;
 nwn = 400 ;
 nleg = 33 ;
 numu = 2 ;
 nlev = 52 ;
 nphi = 3 ;
 ngas = 2 ;
 nwnc = 1 ;
 scal = 1 ;
 v3 = 3 ;
 dnl = 1 ;
 nk = 1 ;
 tdisr = UNLIMITED ; // (0 currently)
 na = 16 ;

variables:

 float alb(nwn) ;
 float z(nlay) ;
 float t(nlay) ;
 float p(nlay) ;
 float wl(nwn) ;
 float iof(nwn) ;
 float mtau(nwn) ;
 float htau(nwn) ;
 float hctaus(nwn) ;
 float gtau(nwn) ;
 float outcos(scal) ;
 float phi(nleg) ;
 float phic(scal) ;
 float umu(numu) ;
 float flux(v3, nwn, nlev) ;
 float mix(nlay, ngas) ;
 float c(nlay) ;
 float psat(nlay) ;
 float ga(nwnc) ;
 float wlc(nwnc) ;
 float inc(scal) ;
 int dm(scal) ;
 int ord(scal) ;
 float fbeam(scal) ;
 float wn(nwn) ;
 float tautot(nwn, nlay) ;
 float htaus(nwn, nlay) ;
 float htaux(nwn, nlay) ;
 float taug(nwn, nlay) ;
 float phase(nwn, nlay, nleg) ;
 float ssa(nwn, nlay) ;
 float uu(nwn, nphi, nlev, numu) ;
 float u0u(nwn, nlev, numu) ;
 float tray(nwn, nlay) ;
 float gtauo(tdisr, nwn, nlay) ;
}

14 variables used as
dimensions, for the 35
variables that are arrays

Ex: alb(nwn) means that
alb is a 1D array of nwn
elements.

nwn is stored as one of the
dimensions, and is 400.
Therefore, alb has 400
elements.

Part of a NetCDF file's
contents, shown in CDL
(made by ncdump):

NetCDF
Contents of that file shown with ncview (part of NetCDF's tookit):

NetCDF
The whole file can be easily read with the available libraries, and stored in convenient
containers. Using a reader from pp_lib (http://ppenteado.net/idl):

IDL> h=pp_readncdfs('refspec_g01_0.nc',/hash)
IDL> print,h
var_dims: <ObjHeapVar229(HASH)>
vars: <ObjHeapVar152(HASH)>
dims: <ObjHeapVar118(HASH)>

IDL> print,h['vars']
T: 173.203 175.459 175.848 176.001 175.975 ...
Z: 431.869 418.858 406.067 393.403 380.464 ...
FLUX: 3.00660 1.45536 0.705180 0.341669 0.165532 ...
PHASE: 1.00000 0.779034 0.660858 0.542052 0.449983 ...
TAUTOT:0.694377 0.693420 0.693474 0.693540 0.693636...
(...)

IDL> help,(h['vars'])['TAUTOT']
<Expression> FLOAT = Array[51, 400]

IDL> print,(h['var_dims'])['TAUTOT']
NLAY NWN

IDL> print,(h['dims'])[(h['var_dims'])['TAUTOT']]
NLAY: 51
NWN: 400

http://ppenteado.net/idl

NetCDF - writing

Using pp_lib (http://ppenteado.net/idl/pp_lib/doc/index.html):

See also http://www.exelisvis.com/docs/NCDF_Overview.html

IDL> nx=100
IDL> nx=200
IDL> ny=100
IDL> x=dindgen(nx)
IDL> y=dindgen(ny)
IDL> z=dist(nx,ny)
IDL> ncdf={ncdfname:'example.nc',d:{nx:nx,ny:ny},n:
{x:['nx'],y:['ny'],z:['nx','ny']},v:{x:x,y:y,z:z}}
IDL> pp_writencdf,ncdf
netcdf file example.nc done

http://ppenteado.net/idl/pp_lib/doc/index.html
http://www.exelisvis.com/docs/NCDF_Overview.html

HDF5

IDL has a graphical tool to browse the contents of an HDF5 file and read the data.

IDL> d=h5_browser('INTENSI_test_40.9.OUT.h5')

Visualization of
the selected
variable.

Metadata and
some values of
the selected
variable.

Variable to be
created when
importing from the
file.

File
variables
hierarchy.

HDF5

IDL has a graphical tool to browse the contents of an HDF5 file and read the data.

IDL> d=h5_browser('INTENSI_test_40.9.OUT.h5')
% Imported variable: az

IDL> help,az
** Structure <d5723f38>, 13 tags, length=448, data length=444, refs=1:
 _NAME STRING 'az'
 _ICONTYPE STRING 'binary'
 _TYPE STRING 'DATASET'
 _FILE STRING 'INTENSI_test_40.9.OUT.h5'
 _PATH STRING '/'
 _DATA DOUBLE Array[38]
 _NDIMENSIONS LONG 1
 _DIMENSIONS ULONG64 Array[1]
 _NELEMENTS ULONG64 38
 _DATATYPE STRING 'H5T_FLOAT'
 _STORAGESIZE ULONG 8
 _PRECISION LONG 64
 _SIGN STRING ''

IDL> print,az._data
 0.0000000 1.0000000 2.0000000 3.0000000
4.0000000 5.0000000 6.0000000 8.0000000
(...)

HDF5 – non-interactive reading

(from http://www.exelisvis.com/docs/HDF5_Overview.html)

PRO ex_read_hdf5
file = FILEPATH('hdf5_test.h5', $
SUBDIRECTORY=['examples', 'data'])
file_id = H5F_OPEN(file)
; Open the image dataset within the file.
; This is located within thhtml/images group.
; We could also have used H5G_OPEN to open up the group first.
dataset_id1 = H5D_OPEN(file_id, '/images/Eskimo')
; Read in the actual image data.
image = H5D_READ(dataset_id1)
; Open up the dataspace associated with the Eskimo image.
dataspace_id = H5D_GET_SPACE(dataset_id1)
; Retrieve the dimensions so we can set the window size.
dimensions = H5S_GET_SIMPLE_EXTENT_DIMS(dataspace_id)
; Now open and read the color palette associated with this image.
dataset_id2 = H5D_OPEN(file_id, '/images/Eskimo_palette')
palette = H5D_READ(dataset_id2)
H5S_CLOSE, dataspace_id
H5D_CLOSE, dataset_id1
H5D_CLOSE, dataset_id2
H5F_CLOSE, file_id
; Display the data.
DEVICE, DECOMPOSED=0
WINDOW, XSIZE=dimensions[0], YSIZE=dimensions[1]
TVLCT, palette[0,*], palette[1,*], palette[2,*]
TV, image, /ORDER
END

http://www.exelisvis.com/docs/HDF5_Overview.html

HDF5 - writing

(from http://www.exelisvis.com/docs/HDF5_Overview.html)

PRO ex_create_hdf5
file = filepath('hdf5_out.h5')
fid = H5F_CREATE(file)
;; create data
data = hanning(100,150)
;; get data type and space, needed to create the dataset
datatype_id = H5T_IDL_CREATE(data)
dataspace_id = H5S_CREATE_SIMPLE(size(data,/DIMENSIONS))
;; create dataset in the output file
dataset_id = H5D_CREATE(fid,$
'Sample data',datatype_id,dataspace_id)
;; write data to dataset
H5D_WRITE,dataset_id,data
;; close all open identifiers
H5D_CLOSE,dataset_id
H5S_CLOSE,dataspace_id
H5T_CLOSE,datatype_id
H5F_CLOSE,fid
END

http://www.exelisvis.com/docs/HDF5_Overview.html

Image formats

JPEG, JPEG200, TIFF, GeoTIFF, GIF, PNG, etc.

Well-supported in many platforms, with libraries ready to read and write them.

Some formats have compression, which may be lossless (PNG, JPEG, JPEG2000, TIFF) or
lossy (JPEG, JPEG200, TIFF).

Store images as 2D or 3D arrays (3D often limited to 3 or 4 in one of the dimensions: an image
in 3 or 4 bands), of integers or (in only a few formats) reals.

Some formats allow storing metadata. (most importantly, JPEG, GeoTIFF)

JPEG2000 and GeoTIFF (a type of TIFF) common in astronomy, remote sensing,
geosciences.

Image reading / writing examples - GeoTIFF
IDL> print,query_tiff('issmap_2009.tiff',info,geotiff=geo)
 1

IDL> help,info
** Structure <d4eca4b8>, 18 tags, length=144, data length=132, refs=1:
 CHANNELS LONG 4
 DIMENSIONS LONG Array[2]
 IMAGE_INDEX LONG 0
 NUM_IMAGES LONG 1
 PIXEL_TYPE INT 1
 TYPE STRING 'TIFF'
 BITS_PER_SAMPLE LONG 8
 POSITION FLOAT Array[2]
 RESOLUTION FLOAT Array[2]
 UNITS LONG 2
 TILE_SIZE LONG Array[2]
 DESCRIPTION STRING 'ISS (2009)'
 DATE_TIME STRING '2010:02:18 01:24:36'
(...)

IDL> help,geo
** Structure <d4efa1b8>, 10 tags, length=264, data length=262, refs=1:
 MODELPIXELSCALETAG DOUBLE Array[3]
 MODELTIEPOINTTAG DOUBLE Array[6, 4]
 GEOGRAPHICTYPEGEOKEY INT 4035
 GEOGSEMIMAJORAXISGEOKEY DOUBLE 2575000.0
 GEOGSEMIMINORAXISGEOKEY DOUBLE 2575000.0
(...)

IDL> myimage=read_tiff('issmap_2009.tiff') Reads the image into myimage array

Obtain data about the file

Image reading / writing examples – most formats

JPEG, JPEG200, TIFF, GeoTIFF, GIF, PNG, BMP, DICOM. PPM, SRF.

Reading, writing, visualizing:

IDL> im=read_image('issmap_2009.tiff')
% Loaded DLM: TIFF.
IDL> help,im
IM BYTE = Array[4, 4046, 2023]
IDL> write_image,'issmap_2009.png','png',im
% Compiled module: WRITE_IMAGE.
% Loaded DLM: PNG.
IDL> iopen,'issmap_2009.png',im2,/visualize
IDL> help,im2
IM2 BYTE = Array[4, 4046, 2023]
IDL> print,array_equal(im,im2)
 1

Files – low level processing

● Not always a standard format can do what is necessary.

● Not always there is a choice (you may need to read someone's proprietary format).

● The available support to a standard format might not be enough.

Then you need to write your own low-level routines to process the file.

● Preferably, with a nice high-level interface (interactive or not).

Low level processing - text

Taking the previous example, where columns are of different types:

 NAME CALMPOS FILNAME ECHLPOS DISPPOS TARGNAME POSDIR CLASS MJD-OBS ITIME COADDS
 dec18s0001 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0002 0 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 STAR 54087.57421875 100.00000 1
 dec18s0003 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 FLAT 54087.57812500 4.60000 5
 dec18s0004 1 NIRSPEC-5-AO 62.6300 36.4500 HD85258 NIRSPEC-5-AO/p1 DARK 54087.57812500 4.60000 5

The easiest way to read it directly is to define a structure to get each line, and an array of
structures to get the whole file. :

IDL>
record={name:'',calmpos:0,filname:'',echlpos:0d0,disppos:0d0,targname:
'',posdir:'',class:'',mjd_obs:'',itime:0d0,coadds:0}
IDL> nlines=file_lines('filesearch_scam.txt')
IDL> mydata=replicate(record,nlines-1)
IDL> header=''

After the variables to receive the data were created, the file can be read:

IDL> openr,unit,'filesearch_scam.txt',/get_lun
IDL> readf,unit,header
IDL> readf,unit,mydata,format='(A14,I8,A15,F10.4,F10.4,A18,A19,A15,F15.8,F10.5,I15)'
IDL> free_lun,unit

Writing the file could have been done in almost the same way, just replacing openr by openw
(open file for writing, not reading), and readf by printf. (read instead of write the file).

The file is opened to a unit, which
will be used to specify from which
source reading will be done.

At the end, close the file.

Low level processing - text

Which results in:

IDL> print,header
 NAME CALMPOS FILNAME ECHLPOS DISPPOS TARGNAME
 POSDIR CLASS MJD-OBS ITIME COADDS

IDL> help,mydata
MYDATA STRUCT = -> <Anonymous> Array[4]

IDL> help,mydata[0]
** Structure <d5e38f68>, 11 tags, length=136, data length=124, refs=3:
 NAME STRING ' dec18s0001'
 CALMPOS INT 0
 FILNAME STRING ' NIRSPEC-5-AO'
 ECHLPOS DOUBLE 62.630000
 DISPPOS DOUBLE 36.450000
 TARGNAME STRING ' HD85258'
 POSDIR STRING ' NIRSPEC-5-AO/p1'
 CLASS STRING ' STAR'
 MJD_OBS STRING ' 54087.574'
 ITIME DOUBLE 100.00000
 COADDS INT 1

This case is more complicated because there are columns of strings.

If all columns were numbers, it would not have been necessary to explicitly give the format:
● The column start/end would have been guessed by the reading library.
● Could have been read / written with just an array of numbers (if all are the same type),

without need for structures.

Low level processing - binary

Binary formats can be defined in any way. The file is just a set of bytes. It is up to your
program to know how to interpret it.

A common choice to make them selfodcumented is to include a text header, informing the
data characteristics needed to read the data.

Ex: Create a file that stores an array of doubles, with a header informing the dimensions, so
that the reading program knows how to read the data:

Make up some data and open the file:

IDL> data_to_write=dindgen(3,4)
IDL> openw,unit,'binary_example.dat',/get_lun

Write the dimensions, as text:

IDL> printf,unit,'dimensions of the double array stored below:'
IDL> printf,unit,size(data_to_write,/dimensions)

Write the data, in binary:

IDL> writeu,unit,data_to_write

Close the file:

IDL> free_lun,unit

Writes in binary (unformatted write).

Low level processing - binary

What the file looks like, if seen in a common text editor (which assumes text coding):

dimensions of the double array stored below:
 3 4
^@^@^@^@^@^@^@^@^@^@^@^@^@^@ð^@^@^@^@^@^@^@@^@^@^@^@^@^@^H@^@^@^@^@^
@^@^P@^@^@^@^@^@^@^T@^@^@^@^@^@^@^X@^@^@^@^@^@^@^\@^@^@^@^@^@^@@^@^@
^@^@^@^@"@^@^@^@^@^@^@$@^@^@^@^@^@^@&@

Result of interpreting the
binary data as if it was text.

Low level processing - binary
Reading this file is equally simple:

IDL> header=''
IDL> dims=[0,0]
IDL> openr,unit,'binary_example.dat',/get_lun

Reading the dimensions (stored as text):

IDL> readf,unit,header
IDL> readf,unit,dims

Reading the binary part, after knowing the dimensions:

IDL> data_read=dblarr(dims)
IDL> readu,unit,data_read

Close the file:

IDL> free_lun,unit

Verify that the data were written and read correctly:

IDL> print,array_equal(data_to_write,data_read)
 1

Read binary data (unformatted read)

References
FITS
http://idlastro.gsfc.nasa.gov/contents.html

ISIS Cubes
http://ppenteado.net/idl/pp_lib/doc/index.html

CDF / NetCDF
http://www.exelisvis.com/docs/routines-100.html
http://www.exelisvis.com/docs/routines-101.html
http://www.unidata.ucar.edu/software/netcdf/

HDF/HDF5
http://www.exelisvis.com/docs/routines-103.html
http://www.exelisvis.com/docs/routines-102.html
http://www.hdfgroup.org/HDF5/

EOS
http://www.exelisvis.com/docs/routines-138.html

GRIB
http://www.exelisvis.com/docs/routines-104.html

GeoTIFF
http://www.idlcoyote.com/map_tips/autogeoreg.html

Other formats (including text, binary, image, sound, video, Google Maps, shapefile)
http://www.exelisvis.com/docs/routines-1.html

http://idlastro.gsfc.nasa.gov/contents.html
http://ppenteado.net/idl/pp_lib/doc/index.html
http://www.exelisvis.com/docs/routines-100.html
http://www.exelisvis.com/docs/routines-101.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.exelisvis.com/docs/routines-103.html
http://www.exelisvis.com/docs/routines-102.html
http://www.hdfgroup.org/HDF5/
http://www.exelisvis.com/docs/routines-138.html
http://www.exelisvis.com/docs/routines-104.html
http://www.idlcoyote.com/map_tips/autogeoreg.html
http://www.exelisvis.com/docs/routines-1.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

